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Abstract: We calculate the probability of recoilless emission and detection of neutrinos

(Mössbauer effect with neutrinos) taking into account the boundedness of the parent and

daughter nuclei in the neutrino source and detector as well as the leptonic mixing. We

show that, in spite of their near monochromaticity, the recoillessly emitted and captured

neutrinos oscillate. After a qualitative discussion of this issue, we corroborate and extend

our results by computing the combined rate of ν̄e production, propagation and detection in

the framework of quantum field theory, starting from first principles. This allows us to avoid

making any a priori assumptions about the energy and momentum of the intermediate-

state neutrino. Our calculation permits quantitative predictions of the transition rate

in future experiments, and shows that the decoherence and delocalization factors, which

could in principle suppress neutrino oscillations, are irrelevant under realistic experimental

conditions.
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1. Introduction

Soon after the discovery of recoil-free emission and absorption of gamma rays by Mössbauer

in 1958 [1, 2], it has been suggested by Visscher that a similar effect should also exist for

neutrinos emitted in electron capture processes from unstable nuclei embedded into a crys-

tal lattice [3]. In the 1980’s, the idea was further developed by Kells and Schiffer [4, 5],

who showed that bound state beta decay [6] could provide an alternative recoilless pro-

duction mechanism. In this case, an antineutrino with a very small energy uncertainty

would be emitted, which could then be absorbed through induced orbital electron cap-

ture [7]. Recently, there has been a renewed interest in this idea, inspired by two works by

Raghavan [8, 9], in which the feasibility of an experiment using the emission process

3H → 3He + e−(bound) + ν̄e (1.1)

and the detection process

3He + e−(bound) + ν̄e → 3H (1.2)
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has been studied. The 3H and 3He atoms were proposed to be embedded into metal crystals.

The detection process would then have a resonance nature, leading to an enhancement

of the detection cross section by up to a factor of 1012 compared to the non-resonance

capture of neutrinos of the same energy. If such an experiment were realized, it could

carry out a very interesting physics program, including neutrino detection with 100 g scale

(rather than ton or kiloton scale) detectors, searching for neutrino oscillations driven by

the mixing angle θ13 at a baseline of only 10 m, determining the neutrino mass hierarchy

without using matter effects, searching for active-sterile neutrino oscillations and studying

the gravitational redshift of neutrinos [8 – 11].

In this paper we consider recoillessly emitted and captured neutrinos — which we will

call Mössbauer neutrinos — from a theoretical point of view. In our discussion, we will

mainly focus on the 3H–3He system of eqs. (1.1) and (1.2), but most of our results apply

also to other emitters and absorbers of Mössbauer neutrinos.

One of our main goals is to resolve the recent controversy about the question of whether

Mössbauer neutrinos would oscillate. It has been argued [12] that the answer to this

question depends on whether equal energies or equal momenta are assumed for different

neutrino mass eigenstates — the assumptions often made in deriving the standard formula

for the oscillation probability. Moreover, a possible inhibition of oscillations due to the time-

energy uncertainty relation has been brought up [13]. To come to definitive conclusions

regarding the oscillation phenomenology of Mössbauer neutrinos, we employ a quantum

field theoretical (QFT) approach, in which neutrinos are treated as intermediate states in

the combined production — propagation — detection process and no a priori assumptions

on the energies or momenta of the different neutrino mass eigenstates are made.

We begin in section 2 by qualitatively discussing how the peculiar features of Mössbauer

neutrinos, and in particular their very small energy uncertainty, affect the oscillation phe-

nomenology. We argue that oscillations do occur, and that the coherence length is infinite

if line broadening is neglected. We then proceed to quantitative arguments in section 3 and

discuss a formula for the ν̄e survival probability in the quantum mechanical intermediate

wave packet formalism [14], in which the neutrino is described as a superposition of three

wave packets, one for each mass eigenstate. In section 4, we derive our main result, the rate

for the combined process of neutrino production, propagation and detection in the QFT

external wave packet approach. In this framework, the neutrino is described by an internal

line in a Feynman diagram, while its production and detection partners are described by

wave packets. Also in this section, for the first time, we calculate the rates for beta decay

with production of bound-state electron and for the inverse process of stimulated electron

capture in the case of nuclei bound to a crystal lattice. We distinguish between different

neutrino line broadening mechanisms and concentrate on the oscillation phenomenology,

paying special attention to the coherence and localization terms in the ν̄e survival prob-

ability and to the Mössbauer resonance conditions arising in each case. In section 5, we

discuss the obtained results and draw our conclusions.
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2. Mössbauer neutrinos do oscillate

Mössbauer neutrinos have very special properties compared to those of neutrinos emitted

and detected in conventional processes. In particular, they are almost monochromatic

because they are produced in two-body decays of nuclei embedded in a crystal lattice and

no phonon excitations of the host crystal accompany their production, which ensures the

recoilless nature of this process. Therefore the width of the neutrino line is only limited by

the natural linewidth, which is the reciprocal of the mean lifetime of the emitter, and by

solid-state effects, including electromagnetic interactions of the randomly oriented nuclear

spins, lattice defects and impurities [9, 15 – 17]. For 3H decay, the natural linewidth is

1.17 · 10−24 eV, but it has been estimated that various broadening effects degrade this

value to an experimentally achievable Mössbauer linewidth of γ = O(10−11 eV) [15, 16].

Compared to the neutrino energy in bound state 3H decay, E = 18.6 keV, the achievable

relative linewidth is therefore of order 10−15.

In the standard derivations of the neutrino oscillation formula it is often assumed that

the different neutrino mass eigenstates composing the produced flavor eigenstate have the

same momentum (∆p = 0), while their kinetic energies differ by ∆E ≃ ∆m2/2E. For

bound state tritium beta decay (1.1) and ∆m2 = ∆m2
31 ≃ 2.5 × 10−3 eV2 one has ∆E ≃

7×10−8 eV, which is much larger than γ. One may therefore wonder if the extremely small

energy uncertainty of Mössbauer neutrinos would inhibit oscillations by destroying the

coherence of the different mass eigenstates of which the produced ν̄e is composed. Indeed,

if neutrinos are emitted with no momentum uncertainty and their energy uncertainty (∼ γ)

is much smaller than the energy differences of the different mass eigenstates, in each decay

event one would exactly know which mass eigenstate has been emitted. This would prevent

a coherent emission of different mass eigenstates, thus destroying neutrino oscillations.

If, on the contrary, one adopts the same energy assumption, the momenta of different

mass eigenstates would differ by ∆p ≃ ∆m2/2p, which would not destroy their coherence

provided that the momentum uncertainty of the emitted neutrino state is greater that ∆p;

in that case, oscillations are possible.

It is well known that in reality neither same momentum nor same energy assumptions

are correct [18 – 22]; however, for neutrinos from conventional sources both lead to the

correct result, the reason being that neutrinos are ultra-relativistic and the spatial size of

the corresponding wave packets is small compared to the oscillation length.1 The above

assumptions are thus just shortcuts which allow one to arrive at the correct result in an

easy (though not rigorous) way. However, Mössbauer neutrinos represent a very peculiar

case, which requires a special consideration.

Let us discuss the issue of coherence of different mass eigenstates in more detail. If

one knows the values of the neutrino energy E and momentum p with uncertainties σE

and σp, from the energy-momentum relation of relativistic particles E2 = p2 +m2 one can

1It is also essential that the energy and momentum uncertainties of these neutrinos are of the same

order.
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infer the value of the squared neutrino mass m2 with the uncertainty

σm2 =
√

(2EσE)2 + (2pσp)2 , (2.1)

where it is assumed that σE and σp are independent. By σE and σp we will now understand

the intrinsic quantum mechanical uncertainties of the neutrino energy and momentum, be-

yond which these quantities cannot be measured in a given production or detection process;

σm2 is then the quantum mechanical uncertainty of the inferred neutrino squared mass.

A generic requirement for coherent emission of different mass eigenstates is their indis-

tinguishability: the uncertainty σm2 has to be larger than the mass squared difference

∆m2 [23]. From the above discussion, we know that for Mössbauer neutrinos corre-

sponding to the 3H–3He system one has EσE ∼ 10−8 eV2, which is much smaller than

∆m2 ∼ 10−3 eV2. Thus, whether or not Mössbauer neutrinos oscillate depends on whether

or not 2pσp > ∆m2.

While the energy of Mössbauer neutrinos is very precisely given by the production

process itself, this is not the case for their momentum. The neutrino momentum can in

principle be determined by measuring the recoil momentum of the crystal in which the

emitter is embedded. The ultimate uncertainty σp of this measurement is related to the

coordinate uncertainty σx of the emitting nucleus through the Heisenberg relation σpσx ≥
1/2. Therefore, for the momentum uncertainty to be small enough to destroy the coherence

of different mass eigenstates, 2pσp < ∆m2, the coordinate uncertainty of the emitter must

satisfy σx & 2p/∆m2. This means that the emitter should be strongly de-localized with the

coordinate uncertainty σx of order of the neutrino oscillation length Losc = 4πp/∆m2 ≃
20 m. This is certainly not the case, because the coordinate uncertainty of the emitter

cannot exceed the size of the source, i.e. a few cm. In fact, it is even much smaller, because

in principle it is possible to find out which particular nucleus has undergone the Mössbauer

transition by destroying the crystal and checking which 3H atom has been transformed into
3He. Thus, σx is of the order of interatomic distances, i.e. σp ∼ 10 keV, so that

2pσp ≫ ∆m2 . (2.2)

This means that Mössbauer neutrinos will oscillate. The condition (2.2) is often called the

localization condition, because it requires the neutrino source to be localized in a spatial

region that is small compared to the neutrino oscillation length Losc.

It should be noted that for the observability of neutrino oscillations the coherence of

the emitted neutrino state is not by itself sufficient; in addition, this state must not lose

its coherence until the neutrino is detected. A coherence loss could occur because of the

wave packet separation. When a neutrino is produced as a flavour eigenstate, the wave

packets of its mass eigenstate components fully overlap; however, since they propagate with

different group velocities, after a time tcoh or upon propagating a distance Lcoh ≃ tcoh, these

wave packets separate to such an extent that they can no longer interfere in the detector,

and oscillations become unobservable. The coherence length Lcoh depends on the energy

uncertainty σE of the emitted neutrino state and becomes infinite in the limit σE → 0.
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From the above discussion it follows that the oscillation phenomenology of Mössbauer

neutrinos should mainly depend on their momentum uncertainty, whereas their energy un-

certainty, though crucial for the Mössbauer resonance condition, plays a relatively minor

role for neutrino oscillations. Therefore, the equal energy assumption, though in general

incorrect, should be a good approximation when discussing oscillations of Mössbauer neutri-

nos. Adopting this approach, i.e. assuming the neutrino energy to be exactly fixed at a value

E by the production process, one obtains for the ν̄e survival probability Pee at a distance L

Pee =
∑

j,k

|Uej |2|Uek|2 exp

[

−2πi
L

Losc
jk

]

. (2.3)

Here U is the leptonic mixing matrix, Losc
jk are the partial oscillation lengths,

Losc
jk =

4πE

∆m2
jk

, (2.4)

and the neutrinos are assumed to be ultra-relativistic or nearly mass-degenerate, so that

∆m2
jk

2E
≪ E . (2.5)

Eq. (2.3) is just the standard result for the ν̄e survival probability. As expected, we do

not obtain any decoherence factors if the neutrino energy is exactly fixed. We have also

taken into account here that in real experiments the size of the source and detector are

much smaller than the smallest of the oscillation lengths Losc
jk , so that the localization

condition (2.2) is satisfied.

3. Mössbauer neutrinos in the intermediate wave packet formalism

Although eq. (2.3) shows that neutrino oscillations are not inhibited by the energy con-

straints implied by the Mössbauer effect, the assumption of an exactly fixed neutrino energy

is certainly unrealistic. Therefore, we will now proceed to a more accurate treatment of

Mössbauer neutrinos using an intermediate wave packet model [19, 24, 25, 14, 22]. In this

approach, the propagating neutrino is described by a superposition of mass eigenstates,

each of which is in turn a wave packet with a finite momentum width. With the assump-

tion of Gaussian wave packets, Giunti, Kim and Lee [24, 14] obtain the following expression

for the ν̄e survival probability in the approximation of ultra-relativistic neutrinos:

Pee =
∑

j,k

|Uej |2|Uek|2 exp



−2πi
L

Losc
jk

−
(

L

Lcoh
jk

)2

− 2π2ξ2

(

1

2σpL
osc
jk

)2


 . (3.1)

Here

Lcoh
jk =

2
√

2E2

σp|∆m2
jk|

(3.2)
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Figure 1: Feynman diagram for neutrino emission and absorption in the 3H–3He system.

are the partial coherence lengths, σp being the effective momentum uncertainty of the

neutrino state, and the oscillation lengths Losc
jk are given by eq. (2.4). E is the energy that

a massless neutrino emitted in the same process would have, and the O(1) parameter ξ

quantifies the deviation of the actual energies of massive neutrinos from this value. Since

the energy uncertainty is very small for Mössbauer neutrinos, the mass eigenstates differ

in momentum, but hardly in energy, so that ξ should be negligibly small in our case.

One can see that the first term in the exponent of eq. (3.1) is the standard oscillation

phase. The second term yields a decoherence factor, which describes the suppression of

oscillations due to the wave packet separation. For conventional neutrino experiments

with non-negligible ξ, the third term implements a localization condition by suppressing

oscillations if the spatial width σx = 1/2σp of the neutrino wave packet is much larger than

the oscillation length Losc
jk (cf. eqs. (2.4) and (2.2)). However, we have seen that, due to

the smallness of ξ, the intermediate wave packet formalism predicts this condition to be

irrelevant for oscillations of Mössbauer neutrinos.

4. Mössbauer neutrinos in the external wave packet formalism

In the derivation of the quantum mechanical result discussed in the previous section, certain

assumptions had to be made on the properties of the neutrino wave packets, in particular

on the parameters σp and ξ. We will now proceed to the discussion of a QFT approach [26 –

35], in which these quantities will be automatically determined from the properties of the

source and the detector.

Our calculation will be based on the Feynman diagram shown in figure 1, in which the

neutrino is described as an internal line. We take the external particles to be confined by

quantum mechanical harmonic oscillator potentials to reflect the fact that they are bound

in a crystal lattice. Typical values for the harmonic oscillator frequencies are of the order

of the Debye temperature ΘD ∼ 600 K ≃ 0.05 eV of the respective crystals [9, 15]. Al-

though this simplistic treatment neglects the detailed structure of the solid state lattice, it

is known to correctly reproduce the main features of the conventional Mössbauer effect [36],

and since we are interested mainly in the oscillation physics and not in the exact overall

process rate, it is sufficient for our purposes. As only recoil-free neutrino emission and

absorption are of interest to us, we can neglect thermal excitations and consider the parent
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and daughter nuclei in the source and detector to be in the ground states of their respective

harmonic oscillator potentials.

In section 4.1, we will develop our formalism and derive an expression for the rate

of the combined process of Mössbauer neutrino emission, propagation and absorption. In

sections 4.2–4.4 we will then discuss in detail the effects of different line broadening mech-

anisms.

4.1 The formalism

Let us denote the harmonic oscillator frequencies for tritium and helium in the source by

ωH,S and ωHe,S and those in the detector by ωH,D, and ωHe,D. In general, these are four

different numbers because 3H and 3He have different chemical properties, and because their

different abundances in the source and detector imply ωH,S 6= ωH,D and ωHe,S 6= ωHe,D.

We ignore possible anisotropies of the oscillator frequencies because their inclusion would

merely lengthen our formulas without giving new insights into the oscillation phenomenol-

ogy. The normalized wave functions of the ground states of the three-dimensional harmonic

oscillators |ψA,B,0〉 are given by

ψA,B,0(x, t) =

[
mAωA,B

π

] 3
4

exp

[

− 1

2
mAωA,B|x − xB |2

]

· e−iEA,Bt, (4.1)

where A = {H,He} distinguishes the two types of atoms and B = {S,D} distinguishes

between quantities related to the source and to the detector. The masses of the tritium

and 3He atoms are denoted by mH and mHe, and the coordinates of the lattice sites at

which the atoms are localized in the source and in the detector are xS and xD. The energies

EA,B of the external particles are not exactly fixed due to the line broadening mechanisms

discussed in section 2, but follow narrow distribution functions, which are centered around

EA,B,0 = mA + 1
2ωA,B. For the differences of these mean energies of tritium and helium

atoms in the source and detector we will use the notation

ES,0 = EH,S,0 − EHe,S,0 , ED,0 = EH,D,0 − EHe,D,0 . (4.2)

Before proceeding to calculate the overall rate of the process of neutrino production,

propagation and detection, we compute the expected rates of the Mössbauer neutrino

production and detection treated as separate processes, ignoring neutrino oscillations. This

calculation is very instructive, and we will use its result as a benchmark for comparison

with our subsequent QFT calculations.

The effective weak interaction Hamiltonians for the neutrino production and detection

H+
S and H−

D are given by eqs. (C.2) and (C.3) of appendix C. We will first assume that the

neutrino emitted in the recoil-free production process (1.1) is monochromatic, i.e. neglect

the natural linewidth as well as all broadening effects. Likewise, we will neglect now the ab-

sorption line broadening effects in the recoilless detection process (1.2). A straightforward

calculation gives for the rate of recoilless neutrino production

Γp = Γ0XS , (4.3)

– 7 –
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where

Γ0 =
G2

F cos2 θc

π
|ψe(R)|2m2

e

(
|MV |2 + g2

A|MA|2
)
(
ES,0

me

)2

κS (4.4)

with GF the Fermi constant, θc the Cabibbo angle, me the electron mass, MV and MA

the vector and axial-vector (or Fermi and Gamow-Teller) nuclear matrix elements and

gA ≃ 1.25 the axial-vector coupling constant. Note that for the allowed beta transitions

in the 3H–3He system, MV = 1 and MA ≈
√

3. The quantity ψe(R) is the value of the

anti-symmetrized atomic wave function of 3He at the surface of the nucleus. The factor κS

takes into account that the spectator electron which is initially in the 1s atomic state of
3H ends up in the 1s state of 3He. It is given by the overlap integral of the corresponding

atomic wave functions:

κS =
∣
∣
∣

∫

ΨZ=2,S(r)∗ ΨZ=1,S(r) d3r
∣
∣
∣

2
. (4.5)

The factor XS in eq. (4.3) is defined as

XS = 8

(

ηS +
1

ηS

)−3

e
− p2

σ2
pS ≡ YS e

− p2

σ2
pS , (4.6)

where p =
√

E2
S,0 −m2 is the neutrino momentum,2 and

ηS =

√
mH ωH,S

mHe ωHe,S
, σ2

pS = mH ωH,S +mHe ωHe,S . (4.7)

The energy spectrum ρ(E) of the emitted Mössbauer neutrinos in the considered approx-

imation is

ρ(E) = Γ0XS δ(E − ES,0) . (4.8)

For the cross section of the recoilless detection process (1.2) we obtain

σ(E) = B0XD δ(E − ED,0) , (4.9)

where

B0 = 4πG2
F cos2 θc |ψe(R)|2

(
|MV |2 + g2

A|MA|2
)
κD . (4.10)

The factor κD here is defined similarly to κS in eq. (4.5). Note that in the approximation

of hydrogen-like atomic wave functions one has κS = κD = 512/729 ≃ 0.7. The factor XD

in eq. (4.9) is defined similarly to the corresponding factor for the production process, i.e.

XD = 8

(

ηD +
1

ηD

)−3

e
− p2

σ2
pD ≡ YD e

− p2

σ2
pD (4.11)

2Since in this calculation we ignore neutrino oscillations, we also neglect the neutrino mass differences.
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with

ηD =

√
mH ωH,D

mHe ωHe,D
, σ2

pD = mH ωH,D +mHe ωHe,D . (4.12)

The Mössbauer neutrino production rate Γp and detection cross section σ(E) differ from

those previously obtained for unbound parent and daughter nuclei respectively in refs. [6]

and [7] by the factors XS and XD. Note that in the limit mH ωH,S = mHe ωHe,S, mH ωH,D =

mHe ωHe,D, the pre-exponential factors YS and YD in eqs. (4.6) and (4.11) become equal

to unity, so that XS and XD reduce to the exponentials, which are merely the recoil-free

fractions in the production and detection processes (see the discussion below).

For unpolarized tritium nuclei in the source the produced neutrino flux is isotropic;

therefore the spectral density of the neutrino flux at the detector located at a distance L

from the source is ρ(E)/(4πL2). The detection rate is thus

Γ =
1

4πL2

∫ ∞

0
ρ(E)σ(E) dE =

Γ0B0

4πL2
XSXD δ(ES,0 − ED,0) . (4.13)

We see that it is infinite when the Mössbauer resonance condition ES,0 = ED,0 is exactly

satisfied and zero otherwise, which is a consequence of our assumption of infinitely sharp

emission and absorption lines. This assumption is certainly unphysical, and a realistic

calculation should take into account the finite linewidth effects. We do that here by as-

suming Lorentzian energy distributions for the production and detection processes, which

will be useful for comparison with the results of our subsequent QFT approach. In this

approximation eqs. (4.8) and (4.9) have to be replaced by

ρ(E) = Γ0XS
γS/2π

(E − ES,0)2 + γ2
S/4

, σ(E) = B0XD
γD/2π

(E − ED,0)2 + γ2
D/4

, (4.14)

where γS and γD are the energy widths associated with production and detection. The

combined rate of the neutrino production, propagation and detection process is then

Γ =
1

4πL2

∫ ∞

0
ρ(E)σ(E) dE ≃ Γ0B0

4πL2
XSXD

(γS + γD)/2π

(ES,0 − ED,0)2 + (γS + γD)2/4
. (4.15)

As can be seen from this formula, the Mössbauer resonance condition is

(ES,0 − ED,0)
2 ≪ (γS + γD)2/4 . (4.16)

If it is satisfied, the neutrino detection cross section is enhanced by a factor of order

(αZme)
3/[peEe(γS + γD)] compared to cross sections of non-resonant capture reactions

ν̄e +A→ A′ + e+ for neutrinos of the same energy (assuming the recoil-free fraction to be

of order 1). For γS + γD ∼ 10−11 eV the enhancement factor can be as large as 1012.

We now turn to the QFT treatment of the overall neutrino production, propagation and

detection process, first neglecting the line broadening effects. We derive the corresponding

transition amplitude from the matrix elements of the weak currents in the standard way by

employing the coordinate-space Feynman rules to the diagram in figure 1. For the external

– 9 –
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tritium and helium nuclei, we use the bound state wave function ψA,B,0(x, t) from eq. (4.1).

We obtain

iA =

∫

d3x1 dt1

∫

d3x2 dt2

(
mHωH,S

π

) 3
4

exp

[

− 1

2
mHωH,S|x1 − xS |2

]

e−iEH,St1

·
(
mHeωHe,S

π

) 3
4

exp

[

− 1

2
mHeωHe,S|x1 − xS |2

]

e+iEHe,St1

·
(
mHeωHe,D

π

) 3
4

exp

[

− 1

2
mHeωHe,D|x2 − xD|2

]

e−iEHe,Dt2

·
(
mHωH,D

π

) 3
4

exp

[

− 1

2
mHωH,D|x2 − xD|2

]

e+iEH,Dt2

·
∑

j

Mµ
SMν∗

D |Uej|2
∫

d4p

(2π)4
e−ip0(t2−t1)+ip(x2−x1)

· ūe,Sγµ(1 − γ5)
i(/p+mj)

p2
0 − p2 −m2

j + iǫ
(1 + γ5)γνue,D. (4.17)

The Dirac spinors for the external particles are denoted by uA,B with A = {e,H,He}
and B = {S,D}. Note that all spinors are non-relativistic, so that we can neglect their

momentum dependence. The matrix elements Mµ
S and Mµ

D encode the information on

the bound state tritium beta decay and also on the inverse process, the induced orbital

electron capture which takes place in the detector. They are given by

Mµ
S,D =

GF cos θc√
2

ψe(R) ūHe

(

MV δ
µ
0 − gAMAσi δ

µ
i /

√
3
)

uH κ
1/2
S,D . (4.18)

The integrations over t1 and t2 in eq. (4.17) yield energy-conserving δ-functions at the

neutrino production and detection vertices. The spatial integrals are Gaussian and can be

evaluated after making the transformations x1 → x1 + xS and x2 → x2 + xD. We obtain

iA =N
∫

d4p

(2π)4
2πδ(p0 − ES) 2πδ(p0 −ED) exp

[

− p2

2σ2
p

]

·
∑

j

Mµ
SMν∗

D |Uej|2ūe,Sγµ

(
1 − γ5

) i(/p+mj)e
ipL

p2
0 − p2 −m2

j + iǫ

(
1 + γ5

)
γνue,D, (4.19)

where we have used the notation

ES = EH,S − EHe,S , ED = EH,D − EHe,D , (4.20)

and introduced the baseline vector L = xD − xS . The quantity σp, which is given by

1

σ2
p

=
1

mHωH,S +mHeωHe,S
+

1

mHωH,D +mHeωHe,D
, (4.21)
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can be interpreted as an effective momentum uncertainty of the neutrino. Note that σ−2
p =

σ−2
pS + σ−2

pD. We have also defined a constant

N =

(
mHωH,S

π

) 3
4
(
mHeωHe,S

π

) 3
4
(
mHeωHe,D

π

)3
4
(
mHωH,D

π

) 3
4

·
(

2π

mHωH,S +mHeωHe,S

) 3
2
(

2π

mHωH,D +mHeωHe,D

) 3
2

, (4.22)

containing the numerical factors from eq. (4.1) and those coming from the integrals over

x1 and x2. One of the δ-functions in eq. (4.19) can now be used to perform the integration

over p0, thereby fixing p0 at the value p0 = ES = ED. To compute the remaining integral

over the three-momentum p, we use a theorem by Grimus and Stockinger [30], which states

the following: Let ψ(p) be a three times continuously differentiable function on R
3, such

that ψ itself and all its first and second derivatives decrease at least as 1/|p|2 for |p| → ∞.

Then, for any real number A > 0,

∫

d3p
ψ(p) eipL

A− p2 + iǫ

|L|→∞−−−−→ −2π2

L
ψ

(√
A

L

L

)

ei
√

AL + O
(

L− 3
2

)

. (4.23)

The validity conditions are fulfilled in our case, so that in leading order in 1/L we have

iA =
−i
2L

N δ(ES − ED)
∑

j

exp

[

−
E2

S −m2
j

2σ2
p

]

Mµ
SMν∗

D |Uej|2 ei
q

E2
S−m2

jL

· ūe,Sγµ

(
1 − γ5

)
(/pj

+mj)
(
1 + γ5

)
γνue,D , (4.24)

where the 4-vector pj is defined as pj = (ES , (E
2
S −m2

j)
1/2 L/L). The Grimus-Stockinger

theorem ensures that for L ≫ E−1
0 , where E0 is the characteristic neutrino energy, the

intermediate-state neutrino is essentially on mass shell and its momentum points from the

neutrino source to the detector.

The transition probability P is obtained by summing |A|2 over the spins of the final

states and averaging it over the initial-state spins. Note that no integration over final-state

momenta is necessary because we consider transitions into discrete states. The transition

rate is obtained from P as Γ = dP/dT , where T is the total running time of the experiment.

As we shall see, in the case of inhomogeneous line broadening P ∝ T for large T , so that Γ

is independent of T in that limit. The same is true for the homogeneous line broadening,

except for the special case of the natural line width, for which the dependence on T is more

complicated (see section 4.4).

4.2 Inhomogeneous line broadening

Inhomogeneous line broadening is due to stationary effects, such as impurities, lattice

defects, variations in the lattice constant, etc. [15, 17]. These effects are taken into account

by summing the probabilities of the process for all possible energies of the external particles,

weighted with the corresponding probabilities of these energies. In other words, one has

to fold the probability or total rate of the process with the energy distributions of tritium
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and helium atoms in the source and detector, ρHe,S(EHe,S), ρH,D(EH,D), ρH,S(EH,S) and

ρHe,D(EHe,D). We obtain

P =

∫ ∞

0
dEH,S dEHe,S dEHe,D dEH,D

· ρH,S(EH,S) ρHe,D(EHe,D) ρHe,S(EHe,S) ρH,D(EH,D) |A|2, (4.25)

where |A|2 is the squared modulus of the amplitude, averaged over initial spins and summed

over final spins. Using the standard trace techniques to evaluate these spin sums and

neglecting the momenta of the non-relativistic external particles, one finds

P =T
G4

F cos4 θc

πL2
|ψe(R)|4E2

S,0(|MV |2+g2
A|MA|2)2YSYDκSκD

∫ ∞

0
dEH,SdEHe,SdEHe,DdEH,D

· δ(ES − ED)ρH,S(EH,S) ρHe,D(EHe,D) ρHe,S(EHe,S) ρH,D(EH,D)

·
∑

j,k

|Uej |2|Uek|2 exp

[

−
2E2

S −m2
j −m2

k

2σ2
p

]

e
i
(q

E2
S−m2

j−
√

E2
S−m2

k

)
L
, (4.26)

where YS and YD were defined in eqs. (4.6) and (4.11). Here we have taken into account

that for T ≫ (ES − ED)−1 the squared δ-function appearing in |A|2 can be rewritten as3

[δ(ES −ED)]2 ≃ 1

2π
δ(ES −ED)

∫ T/2

−T/2
dt ei(ES−ED)t =

T

2π
δ(ES −ED) . (4.27)

The overall process rate Γ is then obtained from eq. (4.26) by simply dividing by T . Using

the definitions of Γ0 and B0 given in eqs. (4.4) and (4.10), one finds

Γ =
Γ0B0

4πL2
YSYD

∫ ∞

0
dEH,S dEHe,S dEHe,D dEH,D

· δ(ES − ED)ρH,S(EH,S) ρHe,D(EHe,D) ρHe,S(EHe,S) ρH,D(EH,D)

·
∑

j,k

|Uej |2|Uek|2 exp

[

−
2E2

S −m2
j −m2

k

2σ2
p

]

e
i
(q

E2
S−m2

j−
√

E2
S−m2

k

)
L
. (4.28)

Before proceeding to the computation of the remaining integrations over the energy dis-

tributions of the external particles, let us discuss the expression in the last line in eq. (4.28).

In the approximation of ultra-relativistic (or nearly mass-degenerate) neutrinos, eq. (2.5),

the last exponential becomes the standard oscillation phase factor exp(−2πiL/Losc
jk ) with

the oscillation length defined in eq. (2.4). The additional exponential suppression term

exp[−(2E2
S −m2

j −m2
k)/2σ

2
p ] is an analogue of the well-known Lamb-Mössbauer factor (or

recoil-free fraction) [2, 36, 8], which describes the relative probability of recoil-free emission

and absorption compared to the total emission and absorption probability. We see that for

Mössbauer neutrinos this factor depends not only on their energy, but also on their masses.

3The expression δ(ES − ED) here should be understood as a δ-like function of very small width. For

|ES − ED| ∼ 10−11 eV, the condition T ≫ (ES − ED)−1 would require T ≫ 10−4 s, which should be very

well satisfied in any realistic experiment.
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Therefore, if two mass eigenstates, νj and νk, do not satisfy the relation |∆m2
jk| ≪ σ2

p, the

emission and absorption of the lighter mass eigenstate will be suppressed compared to the

emission and absorption of the heavier one. This can be viewed as a reduced mixing of the

two states, which in turn leads to a suppression of oscillations. To stress this point directly

in our formulas, we rewrite the corresponding factor as

exp

[

−
(pmin

jk )2

σ2
p

]

exp

[

−
|∆m2

jk|
2σ2

p

]

, (4.29)

where pmin
jk is the smaller of the two momenta of the mass eigenstates νj and νk,

(pmin
jk )2 = E2

S − max(m2
j ,m

2
k) . (4.30)

The first exponential in eq. (4.29) describes the suppression of the emission rate and the

absorption cross section, i.e. is a generalized Lamb-Mössbauer factor, while the second one

describes the suppression of oscillations. The condition |∆m2
jk| . 2σ2

p enforced by this

second exponential can also be interpreted as a localization condition: Defining the spatial

localization σx ≃ 1/2σp, we can reformulate it as Losc
jk & 4πσxES/σp. Since the generalized

Lamb-Mössbauer factor (the first factor in eq. (4.29)) enforces ES . σp, this inequality is

certainly fulfilled if |Losc
jk | & 2πσx holds. The latter, stronger, localization condition is the

one obtained in other external wave packet calculations [28, 31, 34] and is also equivalent to

the one obtained in the intermediate wave packet picture [24, 14] and discussed in section 3.

Let us now consider the integrations over the spectra of initial and final states in

eq. (4.28). To evaluate these integrals, we need expressions for ρA,B, based on the physics

of the inhomogeneous line broadening mechanisms. To a very good approximation, these

effects cause a Lorentzian smearing of the energies of the external states [37], so that the

energy distributions are

ρA,B(EA,B) =
γA,B/2π

(EA,B − EA,B,0)2 + γ2
A,B/4

, (4.31)

where, as before, A = {H,He}, B = {S,D} and EA,B,0 = mA + 1
2ωA,B. After evaluating

the four energy integrals in eq. (4.28) (see appendix A for details), we obtain

Γ =
Γ0B0

4πL2
YSYD

1

2π

∑

j,k

|Uej|2|Uek|2 exp

[

−
(pmin

jk )2

σ2
p

]

exp

[

−
|∆m2

jk|
2σ2

p

]

· 1

ES,0 − ED,0 ± i γS−γD

2




γDA

(S)
jk

ES,0 − ED,0 ± i γS+γD

2

+
γSA

(D)
jk

ES,0 − ED,0 ∓ i γS+γD

2



 . (4.32)

In deriving this expression we have used the fact that the generalized Lamb-Mössbauer

factor is almost constant over the resonance region and can thus be approximated by its

value at Ē = 1
2(ES,0 + ED,0). The quantities A

(B)
jk in eq. (4.32) are given by

A
(B)
jk = exp

[

−i
∆m2

jk

2(EB,0 ± i γB

2 )
L

]

≃ exp

[

−2πi
L

Losc
B,jk

]

exp

[

− L

Lcoh
B,jk

]

. (4.33)
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In eqs. (4.32) and (4.33) the upper (lower) signs correspond to ∆m2
jk > 0 (∆m2

jk < 0). The

oscillation and coherence lengths in (4.33) are defined in analogy with eqs. (2.4) and (3.2):

Losc
B,jk =

4πEB,0

∆m2
jk

≃ 4πĒ

∆m2
jk

, Lcoh
B,jk =

4E2
B,0

γB |∆m2
jk|

≃ 4Ē2

γB|∆m2
jk|

, (4.34)

We see that eq. (4.32) depends not on the individual energies and widths of all external

states separately, but only on the combinations EB,0 = EH,B,0 −EHe,B,0 and γB = γH,B +

γHe,B. In the limit of no neutrino oscillations, i.e. when all ∆m2
jk = 0 or Uaj = δaj ,

eq. (4.32) reproduces the no-oscillation result (4.15) obtained in our calculation of the

Mössbauer neutrino production and detection rates treated as separate processes.

If the localization condition |∆m2
jk| ≪ 2σ2

p is satisfied for all j and k, as it is expected

to be the case in realistic experiments, one can pull the generalized Lamb-Mössbauer factor

out of the sum in eq. (4.32) and replace the localization exponentials by unity, which yields

Γ ≃ Γ0B0

4πL2
YSYD exp

[

−
E2

S,0 −m2
0

σ2
p

]
∑

j,k

|Uej|2|Uek|2 Ijk . (4.35)

Here m0 is an average neutrino mass and Ijk is defined in eq. (A.4). In realistic situations,

it is often sufficient to consider two-flavour approximations to this expression. Indeed, at

baselines L ≃ 10 m which are suitable to search for oscillations driven by θ13, the “solar”

mass squared difference ∆m2
21 is inessential, whereas for longer baselines around L ≃ 300 m,

which could be used to study the oscillations driven by the parameters ∆m2
21 and θ12, the

subdominant oscillations governed by ∆m2
31 and θ13 are in the averaging regime, leading to

an effective 2-flavour oscillation probability. In both cases one therefore needs to evaluate

∑

j,k=1,2

|Uej |2|Uek|2Ijk =
(γS + γD)/2π

(ES,0−ED,0)2+ (γS+γD)2

4

{

(
c4+s4

)
+
c2s2

2

[

A(S)+A(D)+c.c.
]
}

(4.36)

− c2s2/4π

(ES,0−ED,0)2+ (γS+γD)2

4





(
A(S)−A(D)

)[

(ES,0−ED,0)(γS−γD)+i (γS+γD)2

2

]

ES,0 − ED,0 + iγS−γD

2

+c.c.



,

where A(B) (B = S,D) denotes the value of A
(B)
jk corresponding to the appropriate fixed

∆m2
jk ≡ ∆m2 (which is defined here to be positive, i.e. ∆m2 = |∆m31|2 or ∆m2

21), s = sin θ

and c = cos θ, with θ being the relevant two-flavour mixing angle.

As in the full three-flavour framework, in the absence of oscillations, i.e. for ∆m2 = 0

or θ = 0, eqs. (4.35) and (4.36) reproduce the no-oscillation rate of eq. (4.15). With

oscillations included, the first line of eq. (4.36) factorizes into the Lorentzian times the ν̄e

survival probability, which in general contains decoherence factors. Such a factorization

does not occur in the second line because the first term in the numerator in the square

brackets is not proportional to γS + γD. This term, containing a product of three small

differences, is typically small compared to the other terms (at least when the Mössbauer

resonance condition |ES,0 − ED,0| ≪ (γS + γD)/2 is satisfied). Still, it is interesting to

observe that a naive factorization of Γ into a no-oscillation transition rate and the ν̄e

survival probability is not possible when this term is retained.
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In all physically relevant situations, however, the whole second line of eq. (4.36) is

negligible because so is A(S) − A(D). Retaining only the contribution of the first line in

eq. (4.36), from eq. (4.35) one finds

Γ ≃Γ0B0

4πL2
YSYD exp

[

−
E2

S,0 −m2
0

σ2
p

]

(γS + γD)/2π

(ES,0 − ED,0)2 + (γS+γD)2

4

·
{

1 − 2s2c2
[

1 − 1

2
(e−αSL + e−αDL) cos

(
∆m2L

4Ē

)]}

, (4.37)

where αS,D = (∆m2/4Ē2)γS,D, so that exp[−αS,DL] = exp[−L/Lcoh
S,D] are the decoherence

factors (cf. eqs. (4.33) and (4.34)). For realistic experiments, one expects the oscillation

phase (∆m2/4Ē)L to be of order unity, so that αS,DL ∼ γS,D/Ē ∼ 10−15, and decoherence

effects are completely negligible. The second line in eq. (4.37) then yields the standard

2-flavour expression for the ν̄e survival probability.

As we have already pointed out, the contribution of the second line in (4.36) to Γ is of

order (e−αSL − e−αDL) and therefore completely negligible. It is interesting to ask if there

are any conceivable situations in which the decoherence exponentials in eq. (4.37) should

be kept, while the contribution of the second line in (4.36) can still be neglected. Direct

inspection of eq. (4.36) shows that this is the case when |ES,0 − ED,0| . |γS + γD| with

αS,DL & 1 and |αS − αD|L≪ 1.

4.3 Homogeneous line broadening

Homogeneous line broadening is caused by various electromagnetic relaxation effects, in-

cluding interactions with fluctuating magnetic fields in the lattice [15, 16]. Unlike inhomo-

geneous broadening, it affects equally all the emitters (or absorbers) and therefore cannot

be taken into account by averaging the unperturbed transition probability over the appro-

priate energy distributions of the participating particles, as we have done in the previous

subsection. Instead, one has to modify already the expression for the amplitude. Since the

homogeneous broadening effects are stochastic, a proper averaging procedure, adequate

to the broadening mechanism, has then to be employed. For the conventional Mössbauer

effect with long-lived nuclei, a number of models of homogeneous broadening was studied

in [16, 17, 38 – 40]. In all the considered cases the Lorentzian shape of the emission and

absorption lines has been obtained. The same models can be used in the case of Mössbauer

neutrinos; one therefore expects that in most of the cases of homogeneous broadening the

overall neutrino production — propagation — detection rate will also have the Lorentzian

resonance form, i.e. will essentially coincide in form with eq. (4.32), or with its simplified

version in which the difference between A
(S)
jk and A

(D)
jk is neglected. A notable exception,

which we consider next, is the homogeneous broadening due to the natural linewidth. As we

shall see, this case is special because the time interval during which the source is produced

is small compared with the tritium lifetime.

4.4 Neutrino Mössbauer effect dominated by the natural linewidth

Although in a Mössbauer neutrino experiment with a tritium source and a 3He absorber

inhomogeneous broadening as well as homogeneous line broadening different from the nat-
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ural linewidth are by far dominant, we will now consider also the case in which the emission

and absorption linewidths are determined by the decay widths of the unstable nuclei. Even

though it is not clear if such a situation can be realized experimentally, it is still very in-

teresting for theoretical reasons.

To take the natural linewidth of tritium into account, we modify our expression for the

amplitude, eq. (4.17), by including exponential decay factors in the 3H wave functions. For

the tritium in the source, this factor has the form exp(−γt/2), describing a decay starting

at t = 0, the time at which the experiment starts.4 For the tritium which is produced in

the detector, the decay factor is exp(−γ(T − t2)/2), where t2 is the production time and T

is the time at which the number of produced 3H atoms is counted. Note that γ here is the

total decay width of tritium, not the partial width for bound state beta decay. Since we are

taking into account the finite lifetime of tritium, we also have to restrict the domain of all

time integrations in A to the interval [0, T ] instead of (−∞,∞). We thus have to compute

iA=

∫

d3x1

∫ T

0
dt1

∫

d3x2

∫ T

0
dt2

(
mHωH,S

π

) 3
4

exp

[

− 1

2
mHωH,S|x1 − xS |2

]

e−iEH,S,0t1− 1
2
γt1

·
(
mHeωHe,S

π

) 3
4

exp

[

− 1

2
mHeωHe,S|x1 − xS |2

]

e+iEHe,S,0t1

·
(
mHeωHe,D

π

) 3
4

exp

[

− 1

2
mHeωHe,D|x2 − xD|2

]

e−iEHe,D,0t2

·
(
mHωH,D

π

) 3
4

exp

[

− 1

2
mHωH,D|x2 − xD|2

]

e+iEH,D,0t2− 1
2
γ(T−t2)

·
∑

j

Mµ
SMν∗

D |Uej|2
∫

d4p

(2π)4
e−ip0(t2−t1)+ip(x2−x1)

· ūe,Sγµ(1 − γ5)
i(/p +mj)

p2
0 − p2 −m2

j + iǫ
(1 + γ5)γνue,D (4.38)

with the same notation as in section 4.1. This form for A can also be derived in a more rig-

orous way using the Weisskopf-Wigner approximation [31, 41 – 43], as shown in appendix C.

After a calculation similar to the one described in section 4.1, we find for the total prob-

ability for finding a tritium atom at the lattice site xD in the detector after a time T :

P =
Γ0B0

4πL2
YSYD

2

π

∑

j,k

θ(Tjk) |Uej |2|Uek|2

· exp

[

−
(pmin

jk )2

σ2
p

]

exp

[

−
|∆m2

jk|
2σ2

p

]

e
i
(q

Ē2−m2
j−
√

Ē2−m2
k

)
L

· e−γTjke−L/Lcoh
jk

sin
[

1
2(ES,0 − ED,0)(T − L

vj
)
]
sin
[

1
2(ES,0 − ED,0)(T − L

vk
)
]

(ES,0 − ED,0)2
(4.39)

4This is also supposed to be the time at which the number of 3H atoms in the source is known. It is

assumed that the source is created in a time interval that is short compared to the tritium mean lifetime

γ−1 = 17.81 years.
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In the derivation, which is described in more detail in appendix B, we have neglected the

energy dependence of the generalized Lamb-Mössbauer factor and of the spinorial terms,

approximating them by their values at Ē = 1
2(ES,0+ED,0). Furthermore, we have expanded

the oscillation phase around this average energy. These approximations are justified by the

observation that these quantities are almost constant over the resonance region.

In eq. (4.39) the quantity vj = (Ē2 −m2
j)

1/2/Ē denotes the group velocity of the jth

neutrino mass eigenstate, and the generalized Lamb-Mössbauer factor is parameterized in

the by now familiar form with pmin
jk = Ē2 − max(m2

j ,m
2
k). Moreover, we have defined the

quantity

Tjk = min

(

T − L

vj
, T − L

vk

)

, (4.40)

which corresponds to the total running time of the experiment, minus the time of flight of

the heavier of the two mass eigenstates νj and νk. The appearance of the step-function fac-

tor θ(Tjk) in eq. (4.39) is related to the finite neutrino time of flight between the source and

the detector and to the fact that the interference between the jth and kth mass components

leading to oscillations is only possible if both have already arrived at the detector. As in sec-

tion 4.2, decoherence exponentials appear, containing the characteristic coherence lengths

1

Lcoh
jk

= γ

∣
∣
∣
∣

1

vj
− 1

vk

∣
∣
∣
∣
. (4.41)

In the approximation of ultra-relativistic (or nearly mass-degenerate) neutrinos, this be-

comes

Lcoh
jk =

4Ē2

γ|∆m2
jk|

, (4.42)

and is thus analogous to eqs. (3.2) and (4.34).

While the first two lines of eq. (4.39) contain the standard oscillation terms, the gen-

eralized Lamb-Mössbauer factor and some numerical factors, the expression in the third

line is unique to Mössbauer neutrinos in the regime of natural linewidth dominance. To

interpret this part of the probability, it is helpful to consider the approximation of massless

neutrinos, which implies vj = 1 for all j and thus Lcoh
jk = ∞. If we neglect the time of flight

L/vj compared to the total running time of the experiment T , we find that the probability

is proportional to

e−γT sin2[(ES,0 − ED,0)
T
2 ]

(ES,0 − ED,0)2
. (4.43)

The factor exp(−γt) accounts for the depletion of 3H in the source and for the decay of

the produced 3H in the detector.

It is easy to see that for γ = 0 and T → ∞, eq. (4.28) is recovered, except for the

omitted averaging over the energies of the initial and final state nuclei. In particular,

we see that in this limit, due to the emerging δ-function, the Mössbauer effect can only

occur if the resonance energies ES,0 and ED,0 match exactly. For finite T , in contrast,

– 17 –



J
H
E
P
0
5
(
2
0
0
8
)
0
0
5

the matching need not be exact because of the time-energy uncertainty relation, which

permits a certain detuning, as long as |ES,0−ED,0| . 1/T . In the case of strong inequality

|ES,0 − ED,0| ≪ 1/T , eq. (4.43) can be approximated by

T 2 e−γT /4 . (4.44)

It is crucial to note that the allowed detuning of ES,0 and ED,0 does not depend on γ,

contrary to what one might expect. Instead, the Mössbauer resonance condition requires

this detuning to be small compared to the reciprocal of the overall observation time T .

Therefore, the natural linewidth is not a fundamental limitation to the energy resolution

of a Mössbauer neutrino experiment. There is a well-known analogue to this in quantum

optics [44], called subnatural spectroscopy. Consider an experiment, in which an atom is

instantaneously excited from its ground state into an unstable state |b〉 by a strong laser

pulse at t = 0. Moreover, the atom is continuously exposed to electromagnetic radiation

with a photon energy E, which can eventually excite it further into another unstable state

|a〉. If, after a time τ , the number of atoms in state |a〉 is measured, it turns out that

the result is proportional to 1/[(E −∆E)2 + (γa − γb)
2/4] rather than to naively expected

1/[(E − ∆E)2 + (γa + γb)
2/4], where ∆E is the energy difference between the two states,

and γa, γb are their respective widths. In our case, the state |b〉 corresponds to a 3H atom

in the source and a 3He atom in the detector, while |a〉 corresponds to a 3He atom in the

source and a 3H atom in the detector. The initial excitation of state |b〉 corresponds to

producing the tritium source and starting the Mössbauer neutrino experiment, and the

transition from |b〉 to |a〉 corresponds to the production, propagation and absorption of a

neutrino. Since the difference of decay widths γa − γb vanishes for Mössbauer neutrinos,5

we see that γ does not have any impact on the achievable energy resolution, in accordance

with eq. (4.43). Note that this is only true because the source is produced at one specific

point in time, namely t = 0 (more generally, during a time interval that is short compared

to the tritium lifetime). In a hypothetical experiment, in which tritium is continuously

replenished in the source, an additional integration of P over the production time would

be required, and this would yield proportionality to 1/[(ES,0 −ED,0)
2 + γ2], in full analogy

with the corresponding result in quantum optics [44].

The T -dependence of P, as given by eq. (4.44) can be understood already from a clas-

sical argument. If we denote the number of 3H atoms in the source by NS and the corre-

sponding number in the detector byND, the latter obeys the following differential equation:

ṄD = −ṄSN0Pee
σ(T )

4πL2
− γND . (4.45)

Here Pee is the ν̄e survival probability, N0 is the number of 3He atoms in the detector,

which we consider constant (this is justified if the number of 3H atoms produced in the

detector is small compared to the initial number of 3He), and σ(T ) is the absorption cross

section. It depends on T because, due to the Heisenberg principle, the accuracy to which

the resonance condition has to be fulfilled is given by T−1. If we describe this limitation by

5We assume that the tritium nuclei in the source and detector have the same mean lifetime.
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assuming the emission and absorption lines to be Lorentzians of width 1/T , we find that

for |ES,0 − ED,0| ≪ T−1 the overlap integral is proportional to T , so that we can write

σ = s0 T with s0 a constant. Using furthermore the fact that NS = NS,0 exp(−γT ), the

solution of eq. (4.45) is found as

ND =
NS,0N0γPees0

8πL2
T 2e−γT . (4.46)

This expression has precisely the T -dependence given by eq. (4.44).

5. Discussion

Let us now summarize our results. We have studied the properties of recoillessly emit-

ted and absorbed neutrinos (Mössbauer neutrinos) in a plane wave treatment (section 2),

in a quantum mechanical wave packet approach (section 3) and in a full quantum field

theoretical calculation (section 4). The plane wave treatment corresponds to the stan-

dard derivation based on the same energy approximation. We have pointed out, that for

Mössbauer neutrinos this approximation is justifiable, even though for conventional neu-

trino sources it is generally considered to be inconsistent. The wave packet approach is an

extension of the plane wave treatment, which takes into account the small but non-zero

energy and momentum spread of the neutrino. Finally, the QFT calculation is superior to

the other two, in particular, because no prior assumptions about the energies and momenta

of the intermediate-state neutrinos have to be made. These properties are automatically

determined from the wave functions of the external particles in the source and in the de-

tector. For these wave functions we used well established approximations that are known

to be good in the theory of the standard Mössbauer effect.

In all three approaches that have been discussed, we have consistently arrived at the

prediction that Mössbauer neutrinos will oscillate, in spite of their very small energy un-

certainty. The plane wave result, eq. (2.5), is actually the standard textbook expression for

the ν̄e survival probability, and eqs. (3.1), (4.32) and (4.39) are extensions of this expres-

sion, containing, in particular, decoherence and localization factors. We have found that

these factors cannot suppress oscillations under realistic experimental conditions, but are

very interesting from the theoretical point of view.

Let us now compare the results of different approaches. First, we observe that the

decoherence exponents in our QFT calculations are linear in L/Lcoh, while in the quantum

mechanical result, eq. (3.1), the dependence is quadratic. This behaviour can be traced

back to the fact that Gaussian neutrino wave packets have been assumed in the quantum

mechanical computation, while in our QFT approach we have employed the Lorentzian

line shapes, which are more appropriate for describing Mössbauer neutrinos. The linear

dependence of the decoherence exponents on L/Lcoh in the case of the Lorentzian neutrino

energy distribution has been previously pointed out in [31].

Even more striking than the differing forms of the decoherence exponentials is the fact

that a localization factor of the form exp[−|∆m2
jk|/2σ2

p ] is present in eqs. (4.32) and (4.39),

while the localization exponentials disappear from eq. (3.1) in the limit ξ → 0 which is
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relevant for Mössbauer neutrinos. This shows that the naive quantum mechanical wave

packet approach does not capture all features of Mössbauer neutrinos. In particular, it

neglects the differences between the emission (and absorption) probabilities of different

mass eigenstates, which effectively may lead to a suppression of neutrino mixing. In realistic

experiments, however, this effect should be negligible.

Another interesting feature of the exponential factors implementing the localization

condition in our QFT calculations is that the corresponding exponents are linear in |∆m2
jk|,

whereas the dependence is quadratic (for ξ 6= 0) in the quantum-mechanical expres-

sion (3.1). This can be attributed to the fact that we consider the parent and daugh-

ter nuclei in the source and detector to be in bound states with zero mean momentum

(but non-zero rms momentum). This is also the reason why the σp-dependence of the

localization exponents in eqs. (4.32) and (4.39) is different from that in the quantum me-

chanical approach (namely, they depend on |∆m2
jk|/2σ2

p rather than |∆m2
jk|/2pσp): for the

considered bound states, the rms momentum is p̄ ∼ σp, so that p̄σp ∼ σ2
p.

One more point to notice is that while the same quantity, the momentum uncertainty

σp, enters into the decoherence and localization factors in the quantum mechanical for-

mula (3.1), this is not the case in the QFT approach, where the localization factors depend

on σp, whereas the decoherence exponentials are determined by the (much smaller) energy

uncertainty. In the case of natural line broadening this energy uncertainty is given by the
3H decay width γ, while in all the other cases it is given by the widths of the neutrino emis-

sion and absorption lines, which are determined by the homogeneous and inhomogeneous

line broadening effects taking place in the source and detector.

The QFT results of eqs. (4.32) and (4.39) describe not only the oscillation physics,

but also the production and detection processes. These results can thus also be used

for an approximate prediction of the total event rate expected in a Mössbauer neutrino

experiment. Both expressions contain the Lamb-Mössbauer factor (or recoil-free fraction),

which describes the relative probability of recoilless decay and absorption of neutrinos.

Moreover, they contain factors that suppress the overall process rate Γ unless the emission

and absorption lines overlap sufficiently well. In the case of inhomogeneous line broadening

(section 4.2) as well as for homogeneous broadening different from the natural linewidth

effect, this is a Lorentzian factor, the same as in the no-oscillation rate (4.15). It suppresses

the transition rate if the peak energies of the emission and absorption lines differ by more

than the combined linewidth γS + γD. We have, however, found that the factorization of

the total rate into the no-oscillation rate including the overlap factor and the oscillation

probability is only approximate. For the hypothetical case of an experiment in which the

neutrino energy uncertainty is dominated by the natural linewidth γ (section 4.4), we have

found that the overlap condition does not depend on γ, but is rather determined by the

reciprocal of the overall duration of the experiment T . Although this result may seem

counterintuitive at first sight, it has a well-known analogy in quantum optics [44] and is

related to the fact that the initial unstable particles in the source are produced in a time

interval much shorter than their lifetime.

Notice that the overlap factors contained in our QFT-based results for the neutrino

Mössbauer effect governed by the natural linewidth and by other line broadening mecha-
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nisms, eqs. (4.39) and (4.35), are two well-known limiting representations of the δ-function,

which yield the energy-conserving δ-function δ(ES,0 − ED,0) in the limits T → ∞ or

γS + γD → 0, respectively.6 One can see that in these limits both expressions repro-

duce, if one sets the ν̄e survival probability Pee to unity, the no-oscillation rate (4.13)

obtained in the infinitely sharp neutrino line limit by treating the Mössbauer neutrino pro-

duction and detection as separate processes. Our QFT results thus generalize the results

of the standard calculations and allow a more accurate and consistent treatment of both

the production – detection rate and the oscillation probability of Mössbauer neutrinos.

To conclude, we have performed a quantum field theoretic calculation of the combined

rate of the emission, propagation and detection of Mössbauer neutrinos for the cases of

inhomogeneous and homogeneous neutrino line broadening. In both cases we found that

the decoherence and localization damping factors present in the combined rate will not

play any role in realistic experimental settings and therefore will not prevent Mössbauer

neutrinos from oscillating.
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A. Derivation of the transition rate for inhomogeneous line broadening

In this appendix we give details of the steps leading from eq. (4.28) to eq. (4.32) when the en-

ergy densities of the external states ρA,B are chosen to have the Lorentzian form, eq. (4.31).

First, we notice that the Lorentzians are sharply peaked, with their widths much

smaller than the peak energies, and therefore the energy integrals in (4.28) get their main

contributions from the narrow intervals around these peaks. Since the peak energies, as well

as their differences EH,S,0−EHe,S,0 and EH,S,0−EHe,S,0 that determine the neutrino energies,

are much larger than the neutrino masses, one can employ the expansion
√

E2
S −m2

i ≃
ES −m2

i /2ES in the exponents.

Next, we make use of the identity

∫ ∞

−∞
dEa dEb

γa/2π

(Ea − Ea,0)2 + γ2
a

4

γb/2π

(Eb −Eb,0)2 +
γ2

b

4

f(Ea − Eb)

=

∫ ∞

−∞
d(Ea − Eb)

(γa + γb)/2π
[
(Ea − Eb) − (Ea,0 − Eb,0)

]2
+ (γa+γb)2

4

f(Ea − Eb) , (A.1)

that holds for any function f(E) for which the integrals in (A.1) exist. To apply this

formula to eq. (4.28), we have to extend the domain of the energy integrals from the

6Eq. (4.39) yields Tδ(ES,0 − ED,0) because it describes a probability rather than a rate.
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physical region [maxj(mj),∞) to the whole real axis, (−∞,∞). This is again possible

because the Lorentzians ρA,B(EA,B) have very narrow widths and therefore ensure that the

unphysical contributions are strongly suppressed, the error introduced by the extension of

the integration interval being of order γS(D)/ES(D),0 ∼ 10−15. We can thus use eq. (A.1)

to perform two of the four energy integrations in eq. (4.28). Of the remaining two, one is

trivial due to the factor δ(ES − ED), so that the expression for Γ becomes

Γ =
Γ0B0

4πL2
YSYD

∫ ∞

−∞
dE

γS/2π

(E − ES,0)2 + γ2
S/4

γD/2π

(E − ED,0)2 + γ2
D/4

·
∑

j,k

|Uej|2|Uek|2 exp

[

−
2E2 −m2

j −m2
k

2σ2
p

]

e−i
∆m2

jk
2E . (A.2)

Next, we pull the generalized Lamb-Mössbauer factor out of the integral, replac-

ing it by its value at Ē = (ES,0 + ED,0)/2. This is justified by the observation that

γS , γD ∼ 10−11 eV ≪ σp ∼ 10 keV, so that the generalized Lamb-Mössbauer factor is

nearly constant over the region where the integrand is sizeable. We are thus left with the

task to compute the expression

Ijk ≡
∫ ∞

−∞
dE

γS/2π

(E − ES,0)2 + γ2
S/4

γD/2π

(E − ED,0)2 + γ2
D/4

e−i
∆m2

jk
2E , (A.3)

which can be done by integration in the complex plane. The integrand of (A.3) has four

poles, two above the real axis and two below, and an essential singularity at E = 0 (see

figure 2). To circumvent the essential singularity, we choose the integration contour to

consist of the real axis with a small interval [−ε, ε] cut out, supplemented by a half-circle of

radius ε around the point E = 0 and closed by a half-circle of large radius. The contribution

of the small half-circle vanishes when its radius goes to zero provided that we avoid the

point E = 0 from above when ∆m2
jk > 0 and from below when ∆m2

jk < 0. Thus, we close

the integration contour in the upper half-plane for ∆m2
jk > 0 and in the lower half-plane

for ∆m2
jk < 0. The contribution from the large half-circle vanishes when its radius tends

to infinity because the product of two Lorentzians goes to zero as |E|−4 for |E| → ∞, while

the exponential becomes unity in this limit. Application of the residue theorem yields now

Ijk =
1

2π

1

ES,0−ED,0±iγS−γD

2




γDA

(S)
jk

ES,0−ED,0±iγS+γD

2

+
γSA

(D)
jk

ES,0−ED,0∓iγS+γD

2



 , (A.4)

with the notation from section 4.2. Here the upper (lower) signs correspond to ∆m2
jk > 0

(∆m2
jk < 0). Inserting this result into eq. (A.2), we obtain eq. (4.32).

B. Derivation of the total transition probability for the case of natural

linewidth dominance

In this appendix we describe the derivation leading from eq. (4.38) to eq. (4.39). The

spatial integrals in eq. (4.38) are the same as those encountered in section 4.1 and yield the
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Re E

Im E

ES,0 + iγS

2

ES,0 − iγS

2

ED,0 + iγD

2

ED,0 − iγD

2

Figure 2: Integration contours in the complex E plane.

factor exp[−p2/2σ2
p] exp[ipL]. The time integrals can also be evaluated straightforwardly;

however, unlike the corresponding integrals in eq. (4.17), they do not give exact, but

only approximate energy conserving factors for the production and detection processes.

This behaviour can be ascribed to the non-zero width of the tritium states and the finite

measurement time T . To evaluate the three-momentum integral over p, we again employ

the Grimus-Stockinger theorem and thus find

iA =
−i

8π2L
N
∑

j

Mµ
SMν∗

D |Uej |2
∫ ∞

−∞
dp0 ūe,Sγµ(1 − γ5)(/pj

+mj)(1 + γ5)γνue,D

· e− γ
2
T e−i(ES−p0)T− γ

2
T − 1

p0 − ES + iγ2

ei(ED−p0)T+ γ
2
T − 1

p0 − ED + iγ2
exp

[

−
p2
0 −m2

j

2σ2
p

]

e
i
q

p2
0−m2

jL
, (B.1)

where the 4-vector pj is defined as pj = (p0, (p
2
0 −m2

j)
1/2 L/L). The exponential depend-

ing on σ2
p, which will eventually lead to the generalized Lamb-Mössbauer factor, can be

approximated by its value at Ē = (ES + ED)/2 because γ ≪ σp ensures that it is almost

constant in the region from which the main contribution to the integral comes, namely the

region where |p0 − ES | . γ and |p0 − ED| . γ. The fact that this region is very narrow

also allows us to pull the spinorial factors out of the integral and to expand the oscillation

phase around Ē:

i
√

p2
0 −m2

jL ≃ i
√

Ē2 −m2
jL+ i

L

vj
(p0 − Ē) , (B.2)

where vj = (Ē2−m2
j)

1/2/Ē. The integral over p0 can then be evaluated by complex contour

integration. The denominator has poles at p0 = ES − iγ/2 and p0 = ED − iγ/2, and the
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relevant terms in the numerator are

(

e−i(ES−p0)T− 1
2
γT − 1

)(

ei(ED−p0)T+ 1
2
γT − 1

)

e
i(p0−Ē) L

vj

= e
ip0

L
vj e

−i(ES−ED)T−Ē L
vj

︸ ︷︷ ︸

(A)

− e
ip0(T+ L

vj
)
e
−iEST−iĒ L

vj
− 1

2
γT

︸ ︷︷ ︸

(B)

− e
−ip0(T− L

vj
)
e
iEDT−iĒ L

vj
+ 1

2
γT

︸ ︷︷ ︸

(C)

+ e
i L

vj
p0
e
−iĒ L

vj
︸ ︷︷ ︸

(D)

. (B.3)

To close the integration contour, we add to the real axis a half-circle of infinite radius.

For the terms labeled (A), (B) and (D), this half-circle has to lie in the upper half-plane,

while for (C) it has to lie in the upper half-plane for T < L/vj, and in the lower half-plane

for T > L/vj . As the integrand is holomorphic for Im(p0) ≥ 0, only in this last case the

integral can be non-zero. The residue theorem then yields

iA=
N

4πL

∑

j

θ(T−L/vj)Mµ
SMν∗

D |Uej |2 ·exp

[

−
Ē2−m2

j

2σ2
p

]

ūe,Sγµ(1−γ5)(/̄pj +mj)(1+γ5)

· γνue,De
i
q

Ē2−m2
jL e

− 1
2
γ(T− L

vj
)
e−

i
2
(ES−ED)T )

ES − ED

[

e
− i

2
(ES−ED)(T− L

vj
)−e

i
2
(ES−ED)(T− L

vj
)
]

,

(B.4)

where now p̄j = (Ē, (Ē2 −m2
j)

1/2 L/L), and θ(x) is the Heaviside step function. The total

probability for finding a tritium atom at the lattice site xD in the detector after a time T is

P = |A|2 , (B.5)

where the bar indicates the average over initial spins and the sum over final spins. Apart

from these spin sums, no integration over the energy distributions of the initial and final

state nuclei is necessary as long as only natural line broadening is taken into account,

because we are dealing with transitions between discrete energy eigenstates. A straightfor-

ward evaluation of eq. (B.5) yields eq. (4.39).

C. Weisskopf-Wigner approach to the effects of the natural line width

In this appendix we use the Weisskopf-Wigner approach [41 – 43, 31] to derive eq. (4.38),

which has been the starting point for our discussion of Mössbauer neutrinos in the regime

of natural linewidth dominance. In particular, our aim is to substantiate the arguments

dictating the form of the exponential decay factors by an explicit derivation.

We can write the Hamiltonian of the system as H = H0 + eiH0tH1e
−iH0t, where H1

is the interaction-representation weak interaction Hamiltonian and H0 is the remainder.

In general, we will not treat H1 as a perturbation since we are ultimately interested in

the depletion of unstable states over time, which cannot be adequately described in a

perturbative approach.
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Particles Energy Coefficient State vector

Initial state 3HS
3HeD E(i) c(i)

∣
∣φ(i)

〉

Intermediate states 3He+
S , ν̄S , e−S

3HeD E
(1)
j c

(1)
j

∣
∣
∣φ

(1)
j

〉

3HS
3HD, νD E

(2)
k c

(2)
k

∣
∣
∣φ

(2)
k

〉

3He+
S , ν̄S , e−S

3HD, νD E
(3)
jk c

(3)
jk

∣
∣
∣φ

(3)
jk

〉

3HeS
3HD E(4) c(4)

∣
∣φ(4)

〉

3HS
3He+

D, ν̄D e−D, νD E
(5)
kl c

(5)
kl

∣
∣
∣φ

(5)
kl

〉

3He+
S , ν̄S , e−S

3He+
D, ν̄D e−D, νD E

(6)
jkl c

(6)
jkl

∣
∣
∣φ

(6)
jkl

〉

Final state 3HeS
3He+

D, ν̄D e−D E
(f)
l c

(f)
l

∣
∣
∣φ

(f)
l

〉

Table 1: Classification of the states appearing in a Mössbauer neutrino experiment.

One can write an arbitrary state as |ψ(t)〉 =
∑

j cj(t) |φj〉, where |φj〉 are the eigenstates

ofH0. The Schrödinger equation then gives the evolution equations for the coefficients cj(t):

iċj(t) =
∑

k

〈φj|H1 |φk〉 ck(t) . (C.1)

For our purposes it will be convenient to slightly modify the notation and classify the

different states according to their particle content, as shown in table 1. 3H and 3He

denote the two types of atoms in the experiment, and the index S or D shows whether the

respective particle is initially localized at the source or at the detector. For those states

for which we have written the electron participating in the reaction and the 3He+ ions

separately, we imply that the electron may be either free or in an atomic bound state,

while for the other states only bound electrons are considered. The upper index (i) stands

for the initial state, the indices (1) through (6) denote intermediate states, and (f) stands

for the final state, after the decay of the source particle, the absorption of the emitted

neutrino in the detector and the decay of the produced tritium. The lower indices stand

for the various quantum numbers of the particles; for example, j encodes the momenta and

the spins of ν̄S and e−S , and the information whether e−S is bound or free.

The evolution of the system is governed by the interaction Hamiltonian H1 = H+
S +

H−
D + H̃+

D +H.c, where

H+
S =

∫

d3x
1√
2
GF cos θc

〈
3He

∣
∣ Jµ

∣
∣3H
〉
ψ̄e,Sγµ(1 − γ5)ψν , (C.2)

H−
D =

∫

d3x
1√
2
GF cos θc

〈
3H
∣
∣ Jµ

∣
∣3He

〉
ψ̄νγµ(1 − γ5)ψe,D , (C.3)

H̃+
D =

∫

d3x
1√
2
GF cos θc

〈
3He

∣
∣ Jµ

∣
∣3H
〉
ψ̄e,Sγµ(1 − γ5)ψν . (C.4)

The Hermitian conjugates of these operators will be denoted H−
S , H+

D and H̃−
D . The

Hamiltonians H+
S and H̃+

D describe tritium decay in the source and detector respectively,
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whereas H−
D describes the ν̄e capture in the detector. Although the Hamiltonians are

essentially related by H+
S = H+

D = H̃+
D , we will treat them as distinct operators throughout

this appendix to keep our derivation more transparent and more general. For the matrix

elements of the transitions, the following relations hold:

〈

φ(i)
∣
∣
∣H−

S

∣
∣
∣φ

(1)
j

〉

=
〈

φ
(2)
k

∣
∣
∣H−

S

∣
∣
∣φ

(3)
jk

〉

=
〈

φ
(5)
kl

∣
∣
∣H−

S

∣
∣
∣φ

(6)
jkl

〉

,
〈

φ(i)
∣
∣
∣H+

D

∣
∣
∣φ

(2)
k

〉

=
〈

φ
(1)
j

∣
∣
∣H+

D

∣
∣
∣φ

(3)
jk

〉

,
〈

φ(4)
∣
∣
∣ H̃−

D

∣
∣
∣φ

(f)
l

〉

=
〈

φ
(2)
k

∣
∣
∣ H̃−

D

∣
∣
∣φ

(5)
kl

〉

=
〈

φ
(3)
jk

∣
∣
∣ H̃−

D

∣
∣
∣φ

(6)
jkl

〉

,

(C.5)

and similarly,

E(i) − E
(1)
j = E

(2)
k −E

(3)
jk = E

(5)
kl − E

(6)
jkl,

E(i) − E
(2)
k = E

(1)
j −E

(3)
jk ,

E(4) − E
(f)
l = E

(2)
k −E

(5)
kl = E

(3)
jk − E

(6)
jkl.

(C.6)

They follow from the fact that the corresponding processes differ only by the spectator

particles. The evolution equations for the system are

iċ(i) =
∑

j

〈

φ(i)
∣
∣
∣H−

S

∣
∣
∣φ

(1)
j

〉

c
(1)
j +

∑

k

〈

φ(i)
∣
∣
∣H+

D

∣
∣
∣φ

(2)
k

〉

c
(2)
k , (C.7)

iċ
(1)
j =

〈

φ
(1)
j

∣
∣
∣H+

S

∣
∣
∣φ(i)

〉

c(i) +
∑

k

〈

φ
(1)
j

∣
∣
∣H+

D

∣
∣
∣φ

(3)
jk

〉

c
(3)
jk , (C.8)

iċ
(2)
k =

〈

φ
(2)
k

∣
∣
∣H−

D

∣
∣
∣φ(i)

〉

c(i) +
∑

j

〈

φ
(2)
k

∣
∣
∣H−

S

∣
∣
∣φ

(3)
jk

〉

c
(3)
jk +

∑

l

〈

φ
(2)
k

∣
∣
∣ H̃−

D

∣
∣
∣φ

(5)
kl

〉

c
(5)
kl , (C.9)

iċ
(3)
jk =

〈

φ
(3)
jk

∣
∣
∣H−

D

∣
∣
∣φ

(1)
j

〉

c
(1)
j +

〈

φ
(3)
jk

∣
∣
∣H+

S

∣
∣
∣φ

(2)
k

〉

c
(2)
k +

∑

l

〈

φ
(3)
jk

∣
∣
∣ H̃−

D

∣
∣
∣φ

(6)
jkl

〉

c
(6)
jkl, (C.10)

iċ(4) =
∑

j

〈

φ(4)
∣
∣
∣H−

D(t1)
∣
∣
∣φ

(1)
j

〉

c
(1)
j +

∑

k

〈

φ(4)
∣
∣
∣H+

S

∣
∣
∣φ

(2)
k

〉

c
(2)
k +

∑

l

〈

φ(4)
∣
∣
∣H̃−

D

∣
∣
∣φ

(f)
l

〉

c
(f)
l , (C.11)

iċ
(5)
kl =

〈

φ
(5)
kl

∣
∣
∣ H̃+

D

∣
∣
∣φ

(2)
k

〉

c
(2)
k +

∑

j

〈

φ
(5)
kl

∣
∣
∣H−

S

∣
∣
∣φ

(6)
jkl

〉

c
(6)
jkl, (C.12)

iċ
(6)
jkl =

〈

φ
(6)
jkl

∣
∣
∣H+

S

∣
∣
∣φ

(5)
kl

〉

c
(5)
kl +

〈

φ
(6)
jkl

∣
∣
∣ H̃+

D

∣
∣
∣φ

(3)
jk

〉

c
(3)
jk , (C.13)

iċ
(f)
l =

∑

k

〈

φ(f)
∣
∣
∣H+

S

∣
∣
∣φ

(5)
kl

〉

c
(5)
kl +

〈

φ
(f)
l

∣
∣
∣ H̃+

D

∣
∣
∣φ(4)

〉

c(4). (C.14)

We treat all processes that occur within the source or within the detector non-

perturbatively, while first-order perturbation theory will be used for processes that require

the propagation of a neutrino between the source and the detector. This second kind

of transitions is suppressed due to the smallness of the solid angle at which the detector

is seen from the source. Consequently, we include only the respective forward reactions

(i.e. those proceeding downward in the scheme of table 1), but neglect the feedback terms,

which would otherwise appear in the equations for c
(1)
j , c

(2)
k , and c

(5)
kl . The feedback of
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∣
∣
∣φ

(f)
l

〉

to
∣
∣φ(4)

〉
is included because the production of both states from the initial state

requires a single neutrino propagation between the source and the detector. The sums in

eqs. (C.7)–(C.14) symbolically denote the summation over the relevant discrete indices and

integration over the continuous variables.

The initial conditions for the equation system (C.7)–(C.14) are given by c(i)(0) = 1

with all other coefficients vanishing at t = 0.

Our ultimate goal is to solve the evolution equations for c(4)(t), which determines

the 3H abundance in the detector at time t. It is convenient to first consider the closed

subsystem formed by eqs. (C.7), (C.8), (C.9), (C.10), (C.12) and (C.13), which we solve

from the bottom upwards. We start by integrating eq. (C.13) to obtain an expression for

c
(6)
jkl, which we then insert into eq. (C.12). This yields

iċ
(5)
kl (t) =

〈

φ
(5)
kl

∣
∣
∣ H̃+

D(t)
∣
∣
∣φ

(2)
k

〉

c
(2)
k (t)

− i
∑

j

∫ t

0
dt1

〈

φ
(5)
kl

∣
∣
∣H−

S (t)
∣
∣
∣φ

(6)
jkl

〉 〈

φ
(6)
jkl

∣
∣
∣H+

S (t1)
∣
∣
∣φ

(5)
kl

〉

c
(5)
kl (t1)

− i
∑

j

∫ t

0
dt1

〈

φ
(5)
kl

∣
∣
∣H−

S (t)
∣
∣
∣φ

(6)
jkl

〉 〈

φ
(6)
jkl

∣
∣
∣ H̃+

D(t1)
∣
∣
∣φ

(3)
jk

〉

c
(3)
jk (t1) . (C.15)

Consider first the second term, which describes the effect on
∣
∣
∣φ

(5)
kl

〉

of its decay into
∣
∣
∣φ

(6)
jkl

〉

.

Following the Weisskopf-Wigner procedure as described in [43], we split the quantum num-

bers indexed by j into the energy E(6) and the remaining parameters β. Denoting the

density of states (the number of states per unit energy interval) by ρ(E(6), β), one can

make the replacements

∣
∣
∣φ

(6)
jkl

〉

→
∣
∣
∣φ

(6)
kl ;E(6), β

〉

,
∑

j

→
∑

β

∫

dE(6)ρ(E(6), β) (C.16)

in the second term of eq. (C.15), which gives

−i
∫

dE(6)K(E(6))

∫ t

0
dt1 e

i(E
(5)
kl −E(6))(t−t1) c

(5)
kl (t1) . (C.17)

Here we have explicitly written down the time dependence of the matrix elements and

introduced the quantity

K(E(6)) =
∑

β

∣
∣
∣

〈

φ
(5)
kl

∣
∣
∣H−

S (0)
∣
∣
∣φ

(6)
kl ;E(6), β

〉∣
∣
∣

2
ρ(E(6), β) , (C.18)

which is a smooth (non-oscillating) function of energy. More specifically, K(E(6)) represents

a broad bump of width O(mW ), so that a non-negligible contribution to the energy integral

in (C.17) can only arise if t−t1 . 1/mW . Otherwise, the integrand is fast oscillating and the

integral is strongly suppressed. Therefore, we can to a very good accuracy replace c
(5)
kl (t1)

by c
(5)
kl (t) in eq. (C.17) and pull it out of the integral over t1 (we assume that c

(5)
kl (t) is ap-

proximately constant over time intervals of order 1/mW . This assumption will be justified a
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posteriori by inspecting the obtained expression for c
(5)
kl (t)). For t≫ 1/mW we thus obtain

− ic
(5)
kl (t)

∫

dE(6)K
(

E(6)
)∫ t

0
dt1 e

i
“

E
(5)
kl −E(6)

”

(t−t1)

≃ −ic(5)kl (t)

∫

dE(6)

[

πδ
(

E
(5)
kl − E(6)

)

+ iP

(

1

E
(5)
kl − E(6)

)]

K
(

E(6)
)

= −i
(
γ

2
+ iδE

)

c
(5)
kl (t) , (C.19)

where

γ = 2πK
(

E
(5)
kl

)

, δE = P

∫

dE(6) K
(
E(6)

)

E
(5)
kl − E(6)

, (C.20)

and P denotes the principal value. As follows from the definition of the function K(E)

in eq. (C.18) and Fermi’s golden rule, γ is just the decay width of 3H in the source. The

quantity δE is the mass renormalization of the particles forming
∣
∣
∣φ

(5)
kl

〉

. From now on,

we will omit δE and similar quantities in subsequent formulas, assuming that they are

already included in the definition of the physical masses of the involved particles. The

formal solution to eq. (C.15) is

c
(5)
kl (t) = −i

∫ t

0
dt1

〈

φ
(5)
kl

∣
∣
∣ H̃+

D(t1)
∣
∣
∣φ

(2)
k

〉

e−
1
2
γ(t−t1) c

(2)
k (t1) (C.21)

+(−i)2
∑

j

∫ t

0
dt1

∫ t1

0
dt2

〈

φ
(5)
kl

∣
∣
∣H−

S (t1)
∣
∣
∣φ

(6)
jkl

〉〈

φ
(6)
jkl

∣
∣
∣ H̃+

D(t2)
∣
∣
∣φ

(3)
jk

〉

e−
1
2
γ(t−t1) c

(3)
jk (t2) .

By a similar argument, we obtain from eq. (C.10):

iċ
(3)
jk (t) =

〈

φ
(3)
jk

∣
∣
∣H−

D(t)
∣
∣
∣φ

(1)
j

〉

c
(1)
j (t) +

〈

φ
(3)
jk

∣
∣
∣H+

S (t)
∣
∣
∣φ

(2)
k

〉

c
(2)
k (t) − i

γ̃

2
c
(3)
jk (t)

− i
∑

l

∫ t

0
dt1

〈

φ
(3)
jk

∣
∣
∣ H̃−

D(t)
∣
∣
∣φ

(6)
jkl

〉 〈

φ
(6)
jkl

∣
∣
∣H+

S (t1)
∣
∣
∣φ

(5)
kl

〉

c
(5)
kl (t1) , (C.22)

where the decay width of 3H in the detector, γ̃, has been defined in analogy with eq. (C.20).

We will now show that the last term of eq. (C.22) can be neglected. To this end, we insert

in it the expression for c
(5)
kl (t) from (C.21), which yields

(−i)2
∑

l

∫ t

0
dt1

∫ t1

0
dt2

∣
∣
∣

〈

φ
(2)
k

∣
∣
∣ H̃−

D(0)
∣
∣
∣φ

(5)
kl

〉∣
∣
∣

2 〈

φ
(6)
jkl

∣
∣
∣H+

S (t1)
∣
∣
∣φ

(5)
kl

〉

· ei
“

E
(2)
k −E

(5)
kl

”

(t−t2)
e−

1
2
γ(t1−t2) c

(2)
k (t2)

+ (−i)3
∑

l

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

∣
∣
∣

〈

φ
(2)
k

∣
∣
∣H̃−

D(0)
∣
∣
∣φ

(5)
kl

〉∣
∣
∣

2〈

φ
(6)
jkl

∣
∣
∣H+

S (t1)
∣
∣
∣φ

(5)
kl

〉∑

j′

〈

φ
(5)
kl

∣
∣
∣H−

S (t2)
∣
∣
∣φ

(6)
j′kl

〉

· ei
“

E
(2)
k −E

(5)
kl

”

(t−t3)
c
(3)
j′k(t3) . (C.23)
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Here we have used eqs. (C.5) and (C.6). We will show now that the first term of eq. (C.23)

can be neglected; a similar argument can be used to justify the neglect of the second term.

Replacing the index l by E(5) and β̃ in analogy with eq. (C.16), we obtain

(−i)2
∫

dE(5)K̃
(

E(5)
)∫ t

0
dt1

∫ t1

0
dt2

〈

φ
(6)
jkl

∣
∣
∣H+

S (t1)
∣
∣
∣φ

(5)
kl

〉

e
i
“

E
(2)
k

−E(5)
”

(t−t2)
e−

1
2
γ(t1−t2)c

(2)
k (t2),

(C.24)

with K̃(E(5)) defined analogously to K(E(6)). As in eq. (C.17), the energy integral is non-

negligible only if t− t2 . 1/mW . We see immediately that here this condition also implies

t − t1 . 1/mW . Consequently, we may pull out of the integral those terms which remain

approximately constant over time intervals O(1/mW ), which gives

(−i)2
〈

φ
(6)
jkl

∣
∣
∣H+

S (t)
∣
∣
∣φ

(5)
kl

〉

c
(2)
k (t)

∫

dE(5) K̃(E(5))

∫ t

0
dt1

∫ t1

0
dt2 e

i
“

E
(2)
k

−E(5)
”

(t−t2)

∼(−i)2
〈

φ
(6)
jkl

∣
∣
∣H+

S (t)
∣
∣
∣φ

(5)
kl

〉

c
(2)
k (t)

1

mW

∫

dE(5)

[

πδ(E
(2)
k −E(5))+iP

(

1

E
(2)
k −E(5)

)]

K̃
(

E(5)
)

∼ O
(

γ̃

mW

)

, (C.25)

which is negligible compared to the other terms contributing to ċ
(3)
jk (t) (cf. eq. (C.22)).

This result already suggests the general rule that the only transitions which may contribute

sizeably to the evolution equations are those corresponding to the direct production of the

states (i.e. production with a minimum number of intermediate steps), and those corre-

sponding to direct feedback from a daughter state into its immediate parent state, e.g. from∣
∣
∣φ

(6)
jkl

〉

into
∣
∣
∣φ

(3)
jk

〉

. All terms corresponding to more complicated interaction chains are neg-

ligible. One can now solve eq. (C.23) for c
(3)
jk :

c
(3)
jk (t) = −i

∫ t

0
dt1

〈

φ
(3)
jk

∣
∣
∣H−

D(t1)
∣
∣
∣φ

(1)
j

〉

e−
1
2
γ̃(t−t1) c

(1)
j (t1)

− i

∫ t

0
dt1

〈

φ
(3)
jk

∣
∣
∣H+

S (t1)
∣
∣
∣φ

(2)
k

〉

e−
1
2
γ̃(t−t1) c

(2)
k (t1) . (C.26)

Next, we plug our expressions (C.26) and (C.21) for c
(3)
jk and c

(5)
kl into eq. (C.9):

iċ
(2)
k (t) =

〈

φ
(2)
k

∣
∣
∣H−

D(t)
∣
∣
∣φ(i)

〉

c(i)(t) − i
γ

2
c
(2)
k (t) − i

γ̃

2
c
(2)
jk (t) (C.27)

− i
∑

j

∫ t

0
dt1

〈

φ
(2)
k

∣
∣
∣H−

S (t)
∣
∣
∣φ

(3)
jk

〉 〈

φ
(3)
jk

∣
∣
∣H−

D(t1)
∣
∣
∣φ

(1)
j

〉

e−
1
2
γ̃(t−t1) c

(1)
j (t1) .

We have omitted a term containing the product of
〈

φ
(2)
k

∣
∣
∣ H̃−

D

∣
∣
∣φ

(5)
kl

〉

,
〈

φ
(5)
kl

∣
∣
∣H−

S

∣
∣
∣φ

(6)
jkl

〉

and
〈

φ
(6)
jkl

∣
∣
∣ H̃+

D

∣
∣
∣φ

(3)
jk

〉

and thus describing the transition chain
∣
∣
∣φ

(3)
jk

〉

→
∣
∣
∣φ

(6)
jkl

〉

→
∣
∣
∣φ

(5)
kl

〉

→
∣
∣
∣φ

(2)
k

〉

, because this term can be shown to be O(γ̃/mW ) by an argument similar to the one
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we used for eq. (C.25). The formal solution to eq. (C.27) is

c
(2)
k (t) = −i

∫ t

0
dt1

〈

φ
(2)
k

∣
∣
∣H−

D(t1)
∣
∣
∣φ(i)

〉

e−
1
2
γ(t−t1)− 1

2
γ̃(t−t1) c(i)(t1) (C.28)

+(−i)2
∑

j

∫ t

0
dt1

∫ t1

0
dt2

〈

φ
(2)
k

∣
∣
∣H−

S (t1)
∣
∣
∣φ

(3)
jk

〉〈

φ
(3)
jk

∣
∣
∣H−

D(t2)
∣
∣
∣φ

(1)
j

〉

e−
1
2
γ(t−t1)− 1

2
γ̃(t−t2)c

(1)
j (t2).

We now proceed to eq. (C.8):

iċ
(1)
j (t) =

〈

φ
(1)
j

∣
∣
∣H+

S (t)
∣
∣
∣φ(i)

〉

c(i)(t) (C.29)

− i
∑

k

∫ t

0
dt1

〈

φ
(1)
j

∣
∣
∣H+

D(t)
∣
∣
∣φ

(3)
jk

〉 〈

φ
(3)
jk

∣
∣
∣H−

D(t1)
∣
∣
∣φ

(1)
j

〉

e−
1
2
γ̃(t−t1) c

(1)
j (t1) .

The contributions coming from c
(2)
k through the transition chain

∣
∣
∣φ

(2)
k

〉

→
∣
∣
∣φ

(3)
jk

〉

→
∣
∣
∣φ

(1)
j

〉

are again omitted as being O(γ̃/mW ). The term containing
〈

φ
(1)
j

∣
∣
∣H+

D(t)
∣
∣
∣φ

(3)
jk

〉 〈

φ
(3)
jk

∣
∣
∣H−

D(t1)
∣
∣
∣φ

(1)
j

〉

describes the direct feedback from
∣
∣
∣φ

(3)
jk

〉

to
∣
∣
∣φ

(1)
j

〉

,

but since the transition
∣
∣
∣φ

(1)
j

〉

→
∣
∣
∣φ

(3)
jk

〉

does not occur spontaneously, the corresponding

decay width is zero. Indeed, when applying the Weisskopf-Wigner procedure, we see that

the resulting δ-function under the energy integral is zero for all allowed energies. Thus,

the second term in eq. (C.29) is negligible, and the equation is solved by

c
(1)
j (t) = −i

∫ t

0
dt1

〈

φ
(1)
j

∣
∣
∣H+

S (t1)
∣
∣
∣φ(i)

〉

c(i)(t1) . (C.30)

We can insert this expression, together with c
(2)
k (t) from eq. (C.28), into the equation for

c(i)(t), and find

c(i)(t) = e−
1
2
γt , (C.31)

up to a term suppressed by γ̃/mW . The closed-form expressions for c
(1)
j (t), c

(2)
k (t), c

(3)
jk (t),

c
(5)
kl (t), and c

(6)
jkl(t) are then

c
(1)
j (t) = −i

∫ t

0
dt1

〈

φ
(1)
j

∣
∣
∣H+

S (t1)
∣
∣
∣φ(i)

〉

e−
1
2
γt1 , (C.32)

c
(2)
k (t) = −i

∫ t

0
dt1

〈

φ
(2)
k

∣
∣
∣H−

D(t1)
∣
∣
∣φ(i)

〉

e−
1
2
γt− 1

2
γ̃(t−t1) , (C.33)

c
(3)
jk (t) = (−i)2

[∫ t

0
dt1

〈

φ
(1)
j

∣
∣
∣H+

S (t1)
∣
∣
∣φ(i)
〉

e−
1
2
γt1

][∫ t

0
dt1

〈

φ
(2)
k

∣
∣
∣H−

D(t1)
∣
∣
∣φ(i)
〉

e−
1
2
γ̃(t−t1)

]

,

(C.34)

c
(5)
kl (t) = (−i)2

∫ t

0
dt1

∫ t1

0
dt2

〈

φ
(5)
kl

∣
∣
∣H̃+

D(t1)
∣
∣
∣φ

(2)
k

〉〈

φ
(2)
k

∣
∣
∣H−

D(t2)
∣
∣
∣φ(i)
〉

e−
1
2
γt− 1

2
γ̃(t1−t2) , (C.35)

c
(6)
jkl(t) = (−i)3

[ ∫ t

0
dt1

〈

φ
(1)
j

∣
∣
∣H+

S (t1)
∣
∣
∣φ(i)

〉

e−
1
2
γt1

]

·
[ ∫ t

0
dt1

∫ t1

0
dt2

〈

φ
(5)
kl

∣
∣
∣ H̃+

D(t1)
∣
∣
∣φ

(2)
k

〉 〈

φ
(2)
k

∣
∣
∣H−

D(t2)
∣
∣
∣φ(i)

〉

e−
1
2
γ̃(t1−t2)

]

. (C.36)
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In the expressions for c
(3)
jk (t) and c

(6)
jkl(t), we have used the identity

∫ t

0
dt1

∫ t1

0
dt2 =

∫ t

0
dt2

∫ t

t2

dt1. (C.37)

Eqs. (C.31)–(C.36) show that all coefficients are slowly varying over time intervals of or-

der 1/mW , which provides the a posteriori justification for pulling them out of the time

integrals when applying the Weisskopf-Wigner procedure.

We have now all the ingredients required to solve for c(4)(t). We insert

eqs. (C.32), (C.33) and (C.14) into eq. (C.11), neglect the O(γ̃/mW ) contribution from

the reaction chain
∣
∣
∣φ

(5)
kl

〉

→
∣
∣
∣φ

(f)
l

〉

→
∣
∣φ(4)

〉
, and apply the completeness relations

∑

j

∣
∣
∣φ

(1)
j

〉〈

φ
(1)
j

∣
∣
∣ = 1 ,

∑

k

∣
∣
∣φ

(2)
k

〉〈

φ
(2)
k

∣
∣
∣ = 1 (C.38)

to dispose of the sums over j and k and of the intermediate bra- and ket-vectors in the

products of matrix elements. This leads us to the main result of this appendix,

c(4)(t) = (−i)2
∫ t

0
dt1

∫ t1

0
dt2

〈

φ(4)
∣
∣
∣

[

H−
D(t1)e

− 1
2
γ̃(t−t1)H+

S (t2)e
− 1

2
γt2

+H+
S (t1)e

− 1
2
γt1 H−

D(t2)e
− 1

2
γ̃(t−t2)

] ∣
∣
∣φ(i)

〉

. (C.39)

We see that c(4)(t) is given by the time-ordered product of the two interaction Hamiltonians,

supplemented by the classically expected exponential decay factors. After inserting the

appropriate expressions for H+
S and H−

D , finally setting γ̃ = γ and applying the Feynman

rules, eq. (C.39) leads directly to eq. (4.38) of section 4.4.

For completeness, we also give the expression for c
(f)
l (t):

c
(f)
l (t) = (−i)3

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

〈

φ
(f)
l

∣
∣
∣

[

H̃+
D(t1)H

−
D(t2)e

− 1
2
γ̃(t1−t2)H+

S (t3)e
− 1

2
γt3 (C.40)

+H̃+
D(t1)H

+
S (t2)e

− 1
2
γt2H−

D(t3)e
− 1

2
γ̃(t1−t3)

+H+
S (t1)e

− 1
2
γt1H̃+

D(t2)H
−
D(t3)e

− 1
2
γ̃(t2−t3)

] ∣
∣
∣φ(i)

〉

.

Note that an alternative way of solving eqs. (C.7)–(C.14) is to exploit the fact that,

in the closed system formed by eqs. (C.7), (C.8), (C.9), (C.10), (C.12), and (C.13), the

processes in the source and those in the detector can be separated by using a product ansatz

for the coefficients c. Once this subsystem is solved, c(4) and c
(f)
l can be computed as above.

References

[1] R.L. Mössbauer, Kernresonanzfluoreszenz von Gammastrahlung in Ir191, Z. Phys. 151 (1958)

124.
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