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ABSTRACT: We calculate the probability of recoilless emission and detection of neutrinos
(Mossbauer effect with neutrinos) taking into account the boundedness of the parent and
daughter nuclei in the neutrino source and detector as well as the leptonic mixing. We
show that, in spite of their near monochromaticity, the recoillessly emitted and captured
neutrinos oscillate. After a qualitative discussion of this issue, we corroborate and extend
our results by computing the combined rate of ., production, propagation and detection in
the framework of quantum field theory, starting from first principles. This allows us to avoid
making any a priori assumptions about the energy and momentum of the intermediate-
state neutrino. Our calculation permits quantitative predictions of the transition rate
in future experiments, and shows that the decoherence and delocalization factors, which
could in principle suppress neutrino oscillations, are irrelevant under realistic experimental
conditions.
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1. Introduction

Soon after the discovery of recoil-free emission and absorption of gamma rays by Mossbauer
in 1958 [, Ffl, it has been suggested by Visscher that a similar effect should also exist for
neutrinos emitted in electron capture processes from unstable nuclei embedded into a crys-
tal lattice [(J]. In the 1980’s, the idea was further developed by Kells and Schiffer [[l, f,
who showed that bound state beta decay [{] could provide an alternative recoilless pro-
duction mechanism. In this case, an antineutrino with a very small energy uncertainty
would be emitted, which could then be absorbed through induced orbital electron cap-
ture [ff]. Recently, there has been a renewed interest in this idea, inspired by two works by
Raghavan [§, ], in which the feasibility of an experiment using the emission process

SH — 3He + e (bound) + 7, (1.1)
and the detection process

He + e (bound) + 7. — °H (1.2)



has been studied. The 3H and *He atoms were proposed to be embedded into metal crystals.
The detection process would then have a resonance nature, leading to an enhancement
of the detection cross section by up to a factor of 10'? compared to the non-resonance
capture of neutrinos of the same energy. If such an experiment were realized, it could
carry out a very interesting physics program, including neutrino detection with 100 g scale
(rather than ton or kiloton scale) detectors, searching for neutrino oscillations driven by
the mixing angle #13 at a baseline of only 10 m, determining the neutrino mass hierarchy
without using matter effects, searching for active-sterile neutrino oscillations and studying
the gravitational redshift of neutrinos [§—[L1].

In this paper we consider recoillessly emitted and captured neutrinos — which we will
call Mossbauer neutrinos — from a theoretical point of view. In our discussion, we will
mainly focus on the *H—3He system of eqs. ([.]]) and ([.J), but most of our results apply
also to other emitters and absorbers of Mdssbauer neutrinos.

One of our main goals is to resolve the recent controversy about the question of whether
Mossbauer neutrinos would oscillate. It has been argued [[J] that the answer to this
question depends on whether equal energies or equal momenta are assumed for different
neutrino mass eigenstates — the assumptions often made in deriving the standard formula
for the oscillation probability. Moreover, a possible inhibition of oscillations due to the time-
energy uncertainty relation has been brought up [[[J]. To come to definitive conclusions
regarding the oscillation phenomenology of Moéssbauer neutrinos, we employ a quantum
field theoretical (QFT) approach, in which neutrinos are treated as intermediate states in
the combined production — propagation — detection process and no a priori assumptions
on the energies or momenta of the different neutrino mass eigenstates are made.

We begin in section [ by qualitatively discussing how the peculiar features of Mossbauer
neutrinos, and in particular their very small energy uncertainty, affect the oscillation phe-
nomenology. We argue that oscillations do occur, and that the coherence length is infinite
if line broadening is neglected. We then proceed to quantitative arguments in section fJ and
discuss a formula for the 7, survival probability in the quantum mechanical intermediate
wave packet formalism [[4], in which the neutrino is described as a superposition of three
wave packets, one for each mass eigenstate. In section [, we derive our main result, the rate
for the combined process of neutrino production, propagation and detection in the QFT
external wave packet approach. In this framework, the neutrino is described by an internal
line in a Feynman diagram, while its production and detection partners are described by
wave packets. Also in this section, for the first time, we calculate the rates for beta decay
with production of bound-state electron and for the inverse process of stimulated electron
capture in the case of nuclei bound to a crystal lattice. We distinguish between different
neutrino line broadening mechanisms and concentrate on the oscillation phenomenology,
paying special attention to the coherence and localization terms in the 7, survival prob-
ability and to the Mdssbauer resonance conditions arising in each case. In section [, we
discuss the obtained results and draw our conclusions.



2. Mossbauer neutrinos do oscillate

Mossbauer neutrinos have very special properties compared to those of neutrinos emitted
and detected in conventional processes. In particular, they are almost monochromatic
because they are produced in two-body decays of nuclei embedded in a crystal lattice and
no phonon excitations of the host crystal accompany their production, which ensures the
recoilless nature of this process. Therefore the width of the neutrino line is only limited by
the natural linewidth, which is the reciprocal of the mean lifetime of the emitter, and by
solid-state effects, including electromagnetic interactions of the randomly oriented nuclear
spins, lattice defects and impurities [0, [ -[4]. For 3H decay, the natural linewidth is
1.17 - 1072*eV, but it has been estimated that various broadening effects degrade this
value to an experimentally achievable Mossbauer linewidth of v = O(10~!! eV) [[L5, [LF].
Compared to the neutrino energy in bound state *H decay, E = 18.6 keV, the achievable
relative linewidth is therefore of order 10712,

In the standard derivations of the neutrino oscillation formula it is often assumed that
the different neutrino mass eigenstates composing the produced flavor eigenstate have the
same momentum (Ap = 0), while their kinetic energies differ by AE ~ Am?/2E. For
bound state tritium beta decay ([LI]) and Am? = Am3; ~ 2.5 x 1073 eV? one has AE ~
7 x 1078 eV, which is much larger than v. One may therefore wonder if the extremely small
energy uncertainty of Mossbauer neutrinos would inhibit oscillations by destroying the
coherence of the different mass eigenstates of which the produced 7, is composed. Indeed,
if neutrinos are emitted with no momentum uncertainty and their energy uncertainty (~ )
is much smaller than the energy differences of the different mass eigenstates, in each decay
event one would exactly know which mass eigenstate has been emitted. This would prevent
a coherent emission of different mass eigenstates, thus destroying neutrino oscillations.
If, on the contrary, one adopts the same energy assumption, the momenta of different
mass eigenstates would differ by Ap ~ Am?/2p, which would not destroy their coherence
provided that the momentum uncertainty of the emitted neutrino state is greater that Ap;
in that case, oscillations are possible.

It is well known that in reality neither same momentum nor same energy assumptions
are correct [[[§-PR3]; however, for neutrinos from conventional sources both lead to the
correct result, the reason being that neutrinos are ultra-relativistic and the spatial size of
the corresponding wave packets is small compared to the oscillation length.! The above
assumptions are thus just shortcuts which allow one to arrive at the correct result in an
easy (though not rigorous) way. However, Mossbauer neutrinos represent a very peculiar
case, which requires a special consideration.

Let us discuss the issue of coherence of different mass eigenstates in more detail. If
one knows the values of the neutrino energy £ and momentum p with uncertainties opg
and o, from the energy-momentum relation of relativistic particles E? = p? +m? one can

Tt is also essential that the energy and momentum uncertainties of these neutrinos are of the same
order.



infer the value of the squared neutrino mass m? with the uncertainty

T2 = \/(2EO’E)2 + (2pop)?, (2.1)

where it is assumed that og and o, are independent. By o and o, we will now understand
the intrinsic quantum mechanical uncertainties of the neutrino energy and momentum, be-
yond which these quantities cannot be measured in a given production or detection process;
Om2 is then the quantum mechanical uncertainty of the inferred neutrino squared mass.
A generic requirement for coherent emission of different mass eigenstates is their indis-
tinguishability: the uncertainty o,,> has to be larger than the mass squared difference
Am? [PJ]. From the above discussion, we know that for M&ssbauer neutrinos corre-
sponding to the 3H-2He system one has Eop ~ 1078eV?, which is much smaller than
Am? ~ 1073 eV2. Thus, whether or not Méssbauer neutrinos oscillate depends on whether
or not 2pa, > Am?.

While the energy of Mdssbauer neutrinos is very precisely given by the production
process itself, this is not the case for their momentum. The neutrino momentum can in
principle be determined by measuring the recoil momentum of the crystal in which the
emitter is embedded. The ultimate uncertainty o, of this measurement is related to the
coordinate uncertainty o, of the emitting nucleus through the Heisenberg relation 0,0, >
1/2. Therefore, for the momentum uncertainty to be small enough to destroy the coherence
of different mass eigenstates, 2po, < Am?, the coordinate uncertainty of the emitter must
satisfy o, > 2p/Am?. This means that the emitter should be strongly de-localized with the
coordinate uncertainty o, of order of the neutrino oscillation length L = 47p/Am? ~
20 m. This is certainly not the case, because the coordinate uncertainty of the emitter
cannot exceed the size of the source, i.e. a few cm. In fact, it is even much smaller, because
in principle it is possible to find out which particular nucleus has undergone the Mossbauer
transition by destroying the crystal and checking which 3H atom has been transformed into
3He. Thus, o, is of the order of interatomic distances, i.e. op ~ 10 keV, so that

2pa, > Am?. (2.2)

This means that Mdssbauer neutrinos will oscillate. The condition (R.3) is often called the
localization condition, because it requires the neutrino source to be localized in a spatial
region that is small compared to the neutrino oscillation length L°%¢.

It should be noted that for the observability of neutrino oscillations the coherence of
the emitted neutrino state is not by itself sufficient; in addition, this state must not lose
its coherence until the neutrino is detected. A coherence loss could occur because of the
wave packet separation. When a neutrino is produced as a flavour eigenstate, the wave
packets of its mass eigenstate components fully overlap; however, since they propagate with
different group velocities, after a time t°°® or upon propagating a distance L% ~ ¢! these
wave packets separate to such an extent that they can no longer interfere in the detector,
and oscillations become unobservable. The coherence length L" depends on the energy
uncertainty og of the emitted neutrino state and becomes infinite in the limit o — 0.



From the above discussion it follows that the oscillation phenomenology of Mdéssbauer
neutrinos should mainly depend on their momentum uncertainty, whereas their energy un-
certainty, though crucial for the Mdssbauer resonance condition, plays a relatively minor
role for neutrino oscillations. Therefore, the equal energy assumption, though in general
incorrect, should be a good approximation when discussing oscillations of Méssbauer neutri-
nos. Adopting this approach, i.e. assuming the neutrino energy to be ezxactly fixed at a value
FE by the production process, one obtains for the 7, survival probability P.. at a distance L

. L
P.. = Z |Uej|?|Uer|* exp [—2mﬁ] . (2.3)
3.k Jk

Here U is the leptonic mixing matrix, ‘J)ZC are the partial oscillation lengths,

A7 E
OSC
W= —— (2.4)
J Am?k

and the neutrinos are assumed to be ultra-relativistic or nearly mass-degenerate, so that

2
Amjk

E. 2.
S < (2.5)

Eq. (B-3) is just the standard result for the 7. survival probability. As expected, we do
not obtain any decoherence factors if the neutrino energy is exactly fixed. We have also
taken into account here that in real experiments the size of the source and detector are
much smaller than the smallest of the oscillation lengths L‘]?SC, so that the localization
condition (B.9) is satisfied.

3. Mossbauer neutrinos in the intermediate wave packet formalism

Although eq. (R.J) shows that neutrino oscillations are not inhibited by the energy con-
straints implied by the Mossbauer effect, the assumption of an exactly fixed neutrino energy
is certainly unrealistic. Therefore, we will now proceed to a more accurate treatment of
Méssbauer neutrinos using an intermediate wave packet model [[9, P4, 5, [[4, 7. In this
approach, the propagating neutrino is described by a superposition of mass eigenstates,
each of which is in turn a wave packet with a finite momentum width. With the assump-
tion of Gaussian wave packets, Giunti, Kim and Lee [P4] [4] obtain the following expression
for the 7, survival probability in the approximation of ultra-relativistic neutrinos:

2 2
L L 1
P. = Ui |2|Uek|? —27i — = | —2n%—— . 3.1
ee ;};| e]| | ek| €xXp TrZL(;»ZC (Lgﬁh) ﬂ-é 20’pL§ZC ( )
Here
g = 222 (3.2)
’ UP‘Am?k‘
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Figure 1: Feynman diagram for neutrino emission and absorption in the *H—2He system.

are the partial coherence lengths, o, being the effective momentum uncertainty of the
neutrino state, and the oscillation lengths L;ZC are given by eq. (R4). E is the energy that
a massless neutrino emitted in the same process would have, and the O(1) parameter £
quantifies the deviation of the actual energies of massive neutrinos from this value. Since
the energy uncertainty is very small for Mdssbauer neutrinos, the mass eigenstates differ
in momentum, but hardly in energy, so that £ should be negligibly small in our case.

One can see that the first term in the exponent of eq. (B.1) is the standard oscillation
phase. The second term yields a decoherence factor, which describes the suppression of
oscillations due to the wave packet separation. For conventional neutrino experiments
with non-negligible &, the third term implements a localization condition by suppressing
oscillations if the spatial width o, = 1/20, of the neutrino wave packet is much larger than
the oscillation length L%¢ (cf. egs. (2.4) and (B.2)). However, we have seen that, due to
the smallness of £, the intermediate wave packet formalism predicts this condition to be
irrelevant for oscillations of Mdssbauer neutrinos.

4. Mossbauer neutrinos in the external wave packet formalism

In the derivation of the quantum mechanical result discussed in the previous section, certain
assumptions had to be made on the properties of the neutrino wave packets, in particular
on the parameters o, and £&. We will now proceed to the discussion of a QFT approach B9 -
BH], in which these quantities will be automatically determined from the properties of the
source and the detector.

Our calculation will be based on the Feynman diagram shown in figure [, in which the
neutrino is described as an internal line. We take the external particles to be confined by
quantum mechanical harmonic oscillator potentials to reflect the fact that they are bound
in a crystal lattice. Typical values for the harmonic oscillator frequencies are of the order
of the Debye temperature ©p ~ 600 K ~ 0.05eV of the respective crystals [}, [§]. Al-
though this simplistic treatment neglects the detailed structure of the solid state lattice, it
is known to correctly reproduce the main features of the conventional Mssbauer effect [Bg],
and since we are interested mainly in the oscillation physics and not in the exact overall
process rate, it is sufficient for our purposes. As only recoil-free neutrino emission and
absorption are of interest to us, we can neglect thermal excitations and consider the parent



and daughter nuclei in the source and detector to be in the ground states of their respective
harmonic oscillator potentials.

In section [L.1], we will develop our formalism and derive an expression for the rate
of the combined process of Mossbauer neutrino emission, propagation and absorption. In
sections [LI-J£.4 we will then discuss in detail the effects of different line broadening mech-
anisms.

4.1 The formalism

Let us denote the harmonic oscillator frequencies for tritium and helium in the source by
wp,s and wpe s and those in the detector by wy p, and wpe p. In general, these are four
different numbers because *H and He have different chemical properties, and because their
different abundances in the source and detector imply wn s # wn,p and wHe,§ # WHe,D-
We ignore possible anisotropies of the oscillator frequencies because their inclusion would
merely lengthen our formulas without giving new insights into the oscillation phenomenol-
ogy. The normalized wave functions of the ground states of the three-dimensional harmonic
oscillators |14 B,) are given by

MAWA B

3
7 1 .
] exp [— §mAwA7B|x - xB|2 -e_’EA’Bt, (4.1)
T

Yapo(x,t) = [
where A = {H, He} distinguishes the two types of atoms and B = {S, D} distinguishes
between quantities related to the source and to the detector. The masses of the tritium
and *He atoms are denoted by my and mpe, and the coordinates of the lattice sites at
which the atoms are localized in the source and in the detector are xg and xp. The energies
E 4 p of the external particles are not exactly fixed due to the line broadening mechanisms
discussed in section fl, but follow narrow distribution functions, which are centered around
Eapo=ma+ %WA, p. For the differences of these mean energies of tritium and helium
atoms in the source and detector we will use the notation

Eso = Eu,s50 — EHe,s,0 Epo=Eupo— EHen,o- (4.2)

Before proceeding to calculate the overall rate of the process of neutrino production,
propagation and detection, we compute the expected rates of the Mdssbauer neutrino
production and detection treated as separate processes, ignoring neutrino oscillations. This
calculation is very instructive, and we will use its result as a benchmark for comparison
with our subsequent QFT calculations.

The effective weak interaction Hamiltonians for the neutrino production and detection
H} and Hj, are given by eqgs. (C.2) and (C.3) of appendix C. We will first assume that the
neutrino emitted in the recoil-free production process ([[.1) is monochromatic, i.e. neglect
the natural linewidth as well as all broadening effects. Likewise, we will neglect now the ab-
sorption line broadening effects in the recoilless detection process ([[.9). A straightforward
calculation gives for the rate of recoilless neutrino production

r,=TyXs, (4.3)



where

GF cos?

E 2
o = Sy (mPad (0 P+ BIP) (222) ks (1.4

e

with Gr the Fermi constant, 6. the Cabibbo angle, m. the electron mass, My and My
the vector and axial-vector (or Fermi and Gamow-Teller) nuclear matrix elements and
ga ~ 1.25 the axial-vector coupling constant. Note that for the allowed beta transitions
in the 3H-2He system, My = 1 and M4 ~ /3. The quantity 1.(R) is the value of the
anti-symmetrized atomic wave function of *He at the surface of the nucleus. The factor kg
takes into account that the spectator electron which is initially in the 1s atomic state of
3H ends up in the 1s state of 3He. It is given by the overlap integral of the corresponding
atomic wave functions:

2
ks = | [Wanas@) Vs dr[ (4.5)
The factor Xg in eq. ([£3) is defined as
1\~ -2
Xs =38 (7754— 77—> e »5 = Yge b5, (4.6)
S

where p = , /E% o — m? is the neutrino momentum,? and
my wWH,s 2
ns=4/———, 0,5 = MHWH,S + MHe WHe,s - (4.7)
MHe WHe,S

The energy spectrum p(FE) of the emitted Mdssbauer neutrinos in the considered approx-
imation is

p(E) =T Xsd(E — Egp). (4.8)
For the cross section of the recoilless detection process ([.3) we obtain
o(E)=ByXpd(E—Epy), (4.9)
where
By = 41G% cos? 0. [1be(R))? (|Mv|* + g4I Mal?) kp - (4.10)

The factor xp here is defined similarly to kg in eq. (.§). Note that in the approximation
of hydrogen-like atomic wave functions one has kg = kp = 512/729 ~ 0.7. The factor Xp
in eq. (.9) is defined similarly to the corresponding factor for the production process, i.e.

p2

1 -3 _ _
XD:8<77D+—> ¢ T = Ype 7o (4.11)
"D

2Since in this calculation we ignore neutrino oscillations, we also neglect the neutrino mass differences.



with

TH WH, D 9
np = | ————, 0,p = MHWH,D + MHe WHe,D - (4.12)
MHe WHe,D

The Mdssbauer neutrino production rate I'), and detection cross section o(E) differ from
those previously obtained for unbound parent and daughter nuclei respectively in refs. [
and [fi] by the factors Xg and Xp. Note that in the limit myg wi g = MHe WHe,s, M WH,D =
MHe WHe, D, the pre-exponential factors Yg and Yp in egs. (.6) and (f.1]) become equal
to unity, so that Xg and Xp reduce to the exponentials, which are merely the recoil-free
fractions in the production and detection processes (see the discussion below).

For unpolarized tritium nuclei in the source the produced neutrino flux is isotropic;
therefore the spectral density of the neutrino flux at the detector located at a distance L

from the source is p(E)/(4wL?). The detection rate is thus

1
 A4rl?

o
| ®emras = R xexp d(Eso - Bpo). (413)
0 L

We see that it is infinite when the Mossbauer resonance condition Fgg = Ep g is exactly
satisfied and zero otherwise, which is a consequence of our assumption of infinitely sharp
emission and absorption lines. This assumption is certainly unphysical, and a realistic
calculation should take into account the finite linewidth effects. We do that here by as-
suming Lorentzian energy distributions for the production and detection processes, which
will be useful for comparison with the results of our subsequent QFT approach. In this
approximation eqgs. ([.§) and (f.9) have to be replaced by

Yp/2m
(E—Epo)?+15/4"

vs/2m

p(E) =Ty Xs )
&) (E— Esp)?+7%/4

o(E) = By Xp

(4.14)

where g and vp are the energy widths associated with production and detection. The
combined rate of the neutrino production, propagation and detection process is then

1 [ Ty By (vs +7p) /27
r——_ E)o(E)dE ~ XX (415
47TL2/0 p(E)o(E) arL? P (Eso— Epo)® + (vs +70)2/4 (4.15)

As can be seen from this formula, the Mdssbauer resonance condition is

(Eso — Epo)® < (vs +7p)?/4. (4.16)

If it is satisfied, the neutrino detection cross section is enhanced by a factor of order
(ozZme)?’/ [PeEe(vs + vp)] compared to cross sections of non-resonant capture reactions
Ve + A — A’ + et for neutrinos of the same energy (assuming the recoil-free fraction to be
of order 1). For s +vp ~ 10711 eV the enhancement factor can be as large as 102

We now turn to the QFT treatment of the overall neutrino production, propagation and
detection process, first neglecting the line broadening effects. We derive the corresponding
transition amplitude from the matrix elements of the weak currents in the standard way by
employing the coordinate-space Feynman rules to the diagram in figure f|. For the external



tritium and helium nuclei, we use the bound state wave function ¥4 g o(x,t) from eq. (fL.1).
We obtain

3
Myw 1 1 .
1A= /d?’:nl dty /d33:2 dto (LM) exp [— §meH75|X1 — XS|2:| e~ iu,st1
T
3

MHeWHe,S \ * 1 .
: <#> exp | — —MHeWHe 5|X1 — Xg|? | e FHesh

T 2
MHWHe, D 1
S 2EeERe Y eXp — —MHeWHe,D|X2 — XD|2 —iEHe,Dt2
T 2
3
4

TMHWH, D 1 2| ,+iBn,pt
<T> eXp|:—§mHWHD‘X2—XD’ ‘o, Dt2

.ZM“M U, 2 / (dﬂf; ~ipolta—t1)Hip(xa—x1)

‘ﬂe,s'yu(l_'ys) ) i(¢+mj)

- (1 + 75)’7lxu6,D' (4.17)
p5— p? — m? + i€

The Dirac spinors for the external particles are denoted by us p with A = {e,H, He}
and B = {S,D}. Note that all spinors are non-relativistic, so that we can neglect their
momentum dependence. The matrix elements M’; and ./\/l% encode the information on
the bound state tritium beta decay and also on the inverse process, the induced orbital
electron capture which takes place in the detector. They are given by

GF cos 6,

M
b V2

¢ e(R) Ttte <MV St — gaMyo; " /\/§) i kY D (4.18)
The integrations over ¢1 and ts in eq. (J17) yield energy-conserving d-functions at the

neutrino production and detection vertices. The spatial integrals are Gaussian and can be
evaluated after making the transformations x; — x; + xg and X3 — X2 + xp. We obtain

2

iA —N/ 7 2m0(po — Es) 2md(po — Ep) exp [— p_2]
20,
Z(ﬁ + mj)eipL

: ZMngUey’Pﬂe,s% (1-49°) (1+9") wtte,p,  (4.19)

2 _ 952 _ 24,
p Py — P m]—l—ze

where we have used the notation
Es = En,s — FHe,s Ep =FEup — Euep, (4.20)

and introduced the baseline vector L = xp — xg. The quantity o,, which is given by

1 1 1
— = + (4.21)

bl
0'% MHWH,S + MHeWHe,§  MHWH,D + MHeWHe,D

— 10 —



can be interpreted as an effective momentum uncertainty of the neutrino. Note that o, 2 =
7,3 2+ o, D We have also defined a constant

3 3 3 3
N — MAWH,S \ * [ MHeWHe,S \ * [ MHeWHe,D \ ¢ ({ MHAWH,D \ *
™ ™ Vs ™

2w 2
( ) , (4.22)
MHWH,D + MHeWHe, D

containing the numerical factors from eq. (1)) and those coming from the integrals over

Njw

< - )
MHWH,S + MHeWHe,S

x1 and x3. One of the §-functions in eq. (f.19) can now be used to perform the integration
over pg, thereby fixing pg at the value pg = Eg = Ep. To compute the remaining integral
over the three-momentum p, we use a theorem by Grimus and Stockinger ], which states
the following: Let ¢(p) be a three times continuously differentiable function on R3, such
that v itself and all its first and second derivatives decrease at least as 1/|p|? for |p| — co.
Then, for any real number A > 0,

ipL .
/dgp ¥(p) €PL  |Lj—oo _Z‘Lﬁw <\/ZE> VAL | (y%). (4.23)

A —p?+ie L
The validity conditions are fulfilled in our case, so that in leading order in 1/L we have

m ]M'U’M |U6J|2 ZME%—WL?L
20

2
p

:—N5 (Es — Ep) Zexp

e, 57 (1= 7) (zfﬁj +m;) (14+9°) wten, (4.24)

where the 4-vector p; is defined as pj (Es, (E% — ?)1/2 L/L). The Grimus-Stockinger
theorem ensures that for L > E0 , where Fjy is the characteristic neutrino energy, the
intermediate-state neutrino is essentially on mass shell and its momentum points from the
neutrino source to the detector.

The transition probability P is obtained by summing |.A|? over the spins of the final
states and averaging it over the initial-state spins. Note that no integration over final-state
momenta is necessary because we consider transitions into discrete states. The transition
rate is obtained from P as I' = dP/dT, where T is the total running time of the experiment.
As we shall see, in the case of inhomogeneous line broadening P o T for large T, so that I'
is independent of T" in that limit. The same is true for the homogeneous line broadening,
except for the special case of the natural line width, for which the dependence on 1" is more
complicated (see section [.4).

4.2 Inhomogeneous line broadening

Inhomogeneous line broadening is due to stationary effects, such as impurities, lattice
defects, variations in the lattice constant, etc. [E, E] These effects are taken into account
by summing the probabilities of the process for all possible energies of the external particles,
weighted with the corresponding probabilities of these energies. In other words, one has
to fold the probability or total rate of the process with the energy distributions of tritium

— 11 —



and helium atoms in the source and detector, phe s(EHe,s), pu,p(En,p), pr,s(EH,s) and
pHe,D(EHe,p). We obtain

o0
P = / dEw s dEye,s dEye,p dEH, D
0

- pu,s(Ew,s) pie,n(EHe,D) pHe,s(EHe,s) pu,p(Eu,p) | A2, (4.25)

where | A|2 is the squared modulus of the amplitude, averaged over initial spins and summed
over final spins. Using the standard trace techniques to evaluate these spin sums and
neglecting the momenta of the non-relativistic external particles, one finds

TG cos 0

P “[e(R)|* E% o(|My|*+ 95| Ma ’2)2YSYD/€SHD/ dEw sdFve,sdEwe, pdEw, p
0

: 5(ES — Ep)pn,s(Eu,s) pre,p(EHe,D) pHe,s(EHe,s) pu,p(EH,D)
2E —m2—m : 2_. 2 /52 3
Z ‘Uej’2’Uek‘2 exp S J k] el(\/ Eg—mi—\/Eg mk)L7 (4.26)

202
J.k p

where Yg and Yp were defined in egs. (fl.) and (JE11]). Here we have taken into account

that for T >> (Es — Ep)~! the squared §-function appearing in |.A|2 can be rewritten as?
2 1 T2 iEs—E T

[6(Es — Ep)|? ~ —6(Eg — ED)/ dt ! Fs—Ep)t — —_§(Eg — Ep). (4.27)
2w —T/2 2w

The overall process rate I' is then obtained from eq. (£.24) by simply dividing by T". Using
the definitions of I’y and By given in egs. ({.4) and ([L10), one finds
Iy B o
I = 40 L20 YsYp / dEw,s dEye,s dEye,p dEH, D
0
-0(Es — Ep)pn,s(Fu,s) pre,0 (Ete,p) pHe,s(EHe,s) pu,p(EH,D)
2

2FZ —m?2 —m?2 | 2_ 2 JEZ 2
'Z\Uemrfek\?exp[— | ’f]e(vEs SVEETE (429

202
J.k p

Before proceeding to the computation of the remaining integrations over the energy dis-
tributions of the external particles, let us discuss the expression in the last line in eq. ({.2§).
In the approximation of ultra-relativistic (or nearly mass-degenerate) neutrinos, eq. (2.3),
the last exponential becomes the standard oscillation phase factor exp(—2miL/L%¢) with
the oscillation length defined in eq. (R.4). The additional exponential suppression term
exp[—(2E% — m —m3)/20 ] is an analogue of the well-known Lamb-Mdossbauer factor (or
recoil-free fractlon B, B4, E ], which describes the relative probability of recoil-free emission
and absorption compared to the total emission and absorption probability. We see that for
Mossbauer neutrinos this factor depends not only on their energy, but also on their masses.

3The expression §(Es — Ep) here should be understood as a é-like function of very small width. For
|Es — Ep| ~ 107! eV, the condition T > (Bs — ED)f1 would require 7 >> 10~ s, which should be very
well satisfied in any realistic experiment.
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Therefore, if two mass eigenstates, v; and v, do not satisfy the relation ]Am?k\ < 012,, the
emission and absorption of the lighter mass eigenstate will be suppressed compared to the
emission and absorption of the heavier one. This can be viewed as a reduced mixing of the
two states, which in turn leads to a suppression of oscillations. To stress this point directly
in our formulas, we rewrite the corresponding factor as

min2 Am2
exp [—( ]k2) ] exp —| §k| , (4.29)
g 20,
where p?}jn is the smaller of the two momenta of the mass eigenstates v; and v,
(jt);n};n)2 = F% - max(m?, mi). (4.30)

The first exponential in eq. (f.29) describes the suppression of the emission rate and the
absorption cross section, i.e. is a generalized Lamb-Mdossbauer factor, while the second one
describes the suppression of oscillations. The condition \Am?k\ S 2012) enforced by this
second exponential can also be interpreted as a localization condition: Defining the spatial
localization o, ~ 1/20,, we can reformulate it as L‘]?,SgC 2 4moyEg/o,. Since the generalized
Lamb-Mossbauer factor (the first factor in eq. (l.29)) enforces Eg < o), this inequality is
certainly fulfilled if |L‘]’,Sf| 2 2710, holds. The latter, stronger, localization condition is the
one obtained in other external wave packet calculations [2§, B1l, B4] and is also equivalent to
the one obtained in the intermediate wave packet picture [R4, [[4] and discussed in section 3.

Let us now consider the integrations over the spectra of initial and final states in
eq. (:2§). To evaluate these integrals, we need expressions for p4 g, based on the physics
of the inhomogeneous line broadening mechanisms. To a very good approximation, these
effects cause a Lorentzian smearing of the energies of the external states [B7], so that the
energy distributions are

VA,B/2m
Eap—Eapo)? +74p/4’

pA,B(EA,B) = ( (4.31)

where, as before, A = {H,He}, B = {S,D} and E4po = ma + %wA,B. After evaluating
the four energy integrals in eq. (l.2§) (see appendix [A] for details), we obtain

. ,
Ty By 1 ) ) (pm) Am,|
I= 4 L2 Ys¥p o Z |U€j| |Uer|” exp T2 exp |— 5o
Jk P D
N D
1 oA * oy (4.32)
Bso— Epo+i 52 | Esg— Epo£i X552 Ego— Epg F i 552 '

In deriving this expression we have used the fact that the generalized Lamb-Mdossbauer
factor is almost constant over the resonance region and can thus be approximated by its
value at F = %(E&O + Ep,). The quantities Agf) in eq. (J£.32) are given by

L L
i p| ~exp |—2mi—— | exp |- . 4.33
2(Epo+i1f) ] b [ L%S,Cjk] ’ [ L?,}}J )
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In egs. (.32) and ([.33) the upper (lower) signs correspond to Am?k >0 (Am?k < 0). The
oscillation and coherence lengths in (f.33) are defined in analogy with eqs. (R.4) and (B.9):
47TEB,0 47TE 4E%g70 4E2

osc ~ LCOh_ — ~ (434)
B,jk B,jk
J Am?k Am?k ’ J 73|Am§k| 73|Am§k| ’

We see that eq. (.33) depends not on the individual energies and widths of all external
states separately, but only on the combinations Ep o = Eu,Bo — EHe,B,0 and 7B = yu,B +
YHe,B- In the limit of no neutrino oscillations, i.e. when all Am?k = 0 or Uy = 0qj
eq. ({.37) reproduces the no-oscillation result (ff.1) obtained in our calculation of the
Moéssbauer neutrino production and detection rates treated as separate processes.

If the localization condition \Am?k\ < 2012) is satisfied for all j and k, as it is expected
to be the case in realistic experiments, one can pull the generalized Lamb-Md&ssbauer factor
out of the sum in eq. (f.33) and replace the localization exponentials by unity, which yields

Lo Bo Eé,o - m% 9 9
I' ~ L2 YsYp exp [_T 2}; \Uej|*|Uek|” L - (4.35)
]7

Here my is an average neutrino mass and I, is defined in eq. (A.4). In realistic situations,
it is often sufficient to consider two-flavour approximations to this expression. Indeed, at
baselines L ~ 10 m which are suitable to search for oscillations driven by 6:3, the “solar”
mass squared difference Am%l is inessential, whereas for longer baselines around L ~ 300 m,
which could be used to study the oscillations driven by the parameters Am3; and 612, the
subdominant oscillations governed by Am?ﬂ and fq3 are in the averaging regime, leading to
an effective 2-flavour oscillation probability. In both cases one therefore needs to evaluate

+7p)/2 242
S U PO I = 0s 72D )/(vjﬂmz {(64—1—34)4—% [A<S)+A(D)+c.c.]} (4.36)
Jh=12 (Es0—Epo)*+1572~
2
252 /dx (A(S)_A(D)) [(E&O—ED,O)(’Ys—’YD)—H(WSJEWD) ]
- +c.c.|,
(ES,O—ED,O)2+M Eso—Epo+ Z"YS;YD

where AB) (B = S, D) denotes the value of AEf) corresponding to the appropriate fixed
Am?k = Am? (which is defined here to be positive, i.e. Am? = |Amg;|? or Am3;), s = sinf
and ¢ = cos §, with 0 being the relevant two-flavour mixing angle.

As in the full three-flavour framework, in the absence of oscillations, i.e. for Am? = 0
or § = 0, egs. (1.39) and (§.3G) reproduce the no-oscillation rate of eq. (f.1§). With
oscillations included, the first line of eq. ({.30) factorizes into the Lorentzian times the 7,
survival probability, which in general contains decoherence factors. Such a factorization
does not occur in the second line because the first term in the numerator in the square
brackets is not proportional to vg + vp. This term, containing a product of three small
differences, is typically small compared to the other terms (at least when the Mdssbauer
resonance condition |Esg — Epo| < (vs + vp)/2 is satisfied). Still, it is interesting to
observe that a naive factorization of I' into a no-oscillation transition rate and the 7,
survival probability is not possible when this term is retained.
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In all physically relevant situations, however, the whole second line of eq. ({.3¢) is

negligible because so is A — AWD).

eq. ([£36), from eq. ({.3F) one finds

Retaining only the contribution of the first line in

Ty B E%Z,—m} 2
I~ 0 g YSYD exXp | — 5.0 D) u (/75 +/7D)/ (ﬂ- +7D)?
drL Tp (Eso— Epp)? + 2520
1 Am2L
{1 -252% |1 — =(e st  gmonl _ 4.37
{ s“c [ 2(6 +e ) cos B ) (4.37)

coh

where ag p = (Am?/4E?)vs p, so that exp[—ag pL] = exp[—L/L$p] are the decoherence
factors (cf. eqs. (f.33) and ([.34)). For realistic experiments, one expects the oscillation
phase (Am?/4E)L to be of order unity, so that ag pL ~ vs.p/E ~ 1071, and decoherence
effects are completely negligible. The second line in eq. ([£37) then yields the standard
2-flavour expression for the 7, survival probability.

As we have already pointed out, the contribution of the second line in ({£.36) to I is of

—ask _ e=apl) and therefore completely negligible. It is interesting to ask if there

order (e
are any conceivable situations in which the decoherence exponentials in eq. ({-37) should
be kept, while the contribution of the second line in (J.36) can still be neglected. Direct

inspection of eq. (f.3q) shows that this is the case when |Egso — Epo| < |vs + vp| with
aspL 21 and |ag —ap|L < 1.

4.3 Homogeneous line broadening

Homogeneous line broadening is caused by various electromagnetic relaxation effects, in-
cluding interactions with fluctuating magnetic fields in the lattice [[5, [[d]. Unlike inhomo-
geneous broadening, it affects equally all the emitters (or absorbers) and therefore cannot
be taken into account by averaging the unperturbed transition probability over the appro-
priate energy distributions of the participating particles, as we have done in the previous
subsection. Instead, one has to modify already the expression for the amplitude. Since the
homogeneous broadening effects are stochastic, a proper averaging procedure, adequate
to the broadening mechanism, has then to be employed. For the conventional Mossbauer
effect with long-lived nuclei, a number of models of homogeneous broadening was studied
in [[L6, 7, B§-[d). In all the considered cases the Lorentzian shape of the emission and
absorption lines has been obtained. The same models can be used in the case of Mossbauer
neutrinos; one therefore expects that in most of the cases of homogeneous broadening the
overall neutrino production — propagation — detection rate will also have the Lorentzian
resonance form, i.e. will essentially coincide in form with eq. ([.:33), or with its simplified
version in which the difference between AE.}? and Agf) is neglected. A notable exception,
which we consider next, is the homogeneous broadening due to the natural linewidth. As we
shall see, this case is special because the time interval during which the source is produced
is small compared with the tritium lifetime.

4.4 Neutrino Mossbauer effect dominated by the natural linewidth

Although in a Mdssbauer neutrino experiment with a tritium source and a *He absorber
inhomogeneous broadening as well as homogeneous line broadening different from the nat-
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ural linewidth are by far dominant, we will now consider also the case in which the emission
and absorption linewidths are determined by the decay widths of the unstable nuclei. Even
though it is not clear if such a situation can be realized experimentally, it is still very in-
teresting for theoretical reasons.

To take the natural linewidth of tritium into account, we modify our expression for the
amplitude, eq. (.17), by including exponential decay factors in the 3H wave functions. For
the tritium in the source, this factor has the form exp(—vt/2), describing a decay starting
at t = 0, the time at which the experiment starts.* For the tritium which is produced in
the detector, the decay factor is exp(—~ (T —t2)/2), where t5 is the production time and T
is the time at which the number of produced *H atoms is counted. Note that ~ here is the
total decay width of tritium, not the partial width for bound state beta decay. Since we are
taking into account the finite lifetime of tritium, we also have to restrict the domain of all
time integrations in A to the interval [0, 7] instead of (—oo, 00). We thus have to compute

T T 3
mygw 4 1 .
z‘A:/dSwl/ dt1/d3x2/ dty (LM) exp [— §meH,S‘X1 — xg/|? e~iPr 0t =370
0 0 ™

3
MHeWHe.S \ * 1 .
. <#> exp | — ~MHeWHe 5|X1 — Xg|* | eT1EHes00

us 2
MW 1
. (w) exp [_ L ewten s — XD|2] B0 ot
us 2
3
- (LHwH’D) ! exp [— %meH plxo — XD|2:| +iBu,p ot~ 57(T~t2)
T
d* . .
. ZMNM ‘Ue]‘Q /( 754 e—zpo(tg—tl)—i-zp(xg—xl)
_ i(p +my)
’ ue,s’}/“(l - 75) 2 pg ]2 . (1 + ’75)’7uue,D (438)
Py — P° —mj +e

with the same notation as in section [l.1. This form for A can also be derived in a more rig-
orous way using the Weisskopf-Wigner approximation [B1, i -[1J], as shown in appendix [J.
After a calculation similar to the one described in section [L.1, we find for the total prob-
ability for finding a tritium atom at the lattice site xp in the detector after a time T

Lo Bo
P = A7 L2 Ze ]k |U€J| |Uek|2
i,k
b [_ (P?}J;V] exp ‘Am]k‘ i(\/E2—m2—\/EZ—m
Ip i

e kg™

1 _ — LYgin (L _ _ L
L/Lcoh Sln [Q(ES7O ED7O)(T vj )] Sm [Q(ES7O ED7O)(T )] (439)
0

4This is also supposed to be the time at which the number of *H atoms in the source is known. It is
assumed that the source is created in a time interval that is short compared to the tritium mean lifetime
~~1 =17.81 years.
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In the derivation, which is described in more detail in appendix [B, we have neglected the
energy dependence of the generalized Lamb-Mossbauer factor and of the spinorial terms,
approximating them by their values at F = %(Es,0+ED70). Furthermore, we have expanded
the oscillation phase around this average energy. These approximations are justified by the
observation that these quantities are almost constant over the resonance region.

In eq. ([39) the quantity v; = (E? — m?)l/z/E' denotes the group velocity of the jth
neutrino mass eigenstate, and the generalized Lamb-Mé&ssbauer factor is parameterized in

the by now familiar form with p;?’ki“ = F? - max(m?, mi) Moreover, we have defined the
quantity
L L
Tj;, = min <T ——, T - —> , (4.40)
Vg Vi

which corresponds to the total running time of the experiment, minus the time of flight of
the heavier of the two mass eigenstates v; and v4. The appearance of the step-function fac-
tor 0(Tjx) in eq. ({.39) is related to the finite neutrino time of flight between the source and
the detector and to the fact that the interference between the jth and kth mass components
leading to oscillations is only possible if both have already arrived at the detector. As in sec-
tion [I.9, decoherence exponentials appear, containing the characteristic coherence lengths

1 1

Vj Vi

1 —_—

— : (4.41)
Lot

In the approximation of ultra-relativistic (or nearly mass-degenerate) neutrinos, this be-
comes

4F?
’Y‘Am?k‘ 7

and is thus analogous to eqs. (B.9) and ({.34).
While the first two lines of eq. (4.39) contain the standard oscillation terms, the gen-

L = (4.42)

eralized Lamb-MGdssbauer factor and some numerical factors, the expression in the third
line is unique to Mdssbauer neutrinos in the regime of natural linewidth dominance. To
interpret this part of the probability, it is helpful to consider the approximation of massless
neutrinos, which implies v; = 1 for all j and thus L;gh = o0. If we neglect the time of flight
L /v; compared to the total running time of the experiment 7', we find that the probability
is proportional to

—~T sin2[(E570 — ED7Q)%]
(Eso— Epy)?

(4.43)

The factor exp(—~t) accounts for the depletion of 3H in the source and for the decay of
the produced ®H in the detector.

It is easy to see that for v = 0 and 7" — o0, eq. (4.2§) is recovered, except for the
omitted averaging over the energies of the initial and final state nuclei. In particular,
we see that in this limit, due to the emerging d-function, the Mdossbauer effect can only
occur if the resonance energies Fgo and Ep o match exactly. For finite 7', in contrast,
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the matching need not be exact because of the time-energy uncertainty relation, which
permits a certain detuning, as long as |Eso— Epo| < 1/T. In the case of strong inequality
|Eso— Epo| < 1/T, eq. ({.49) can be approximated by

T2 77 /4. (4.44)

It is crucial to note that the allowed detuning of Ego and Ep o does not depend on v,
contrary to what one might expect. Instead, the Mossbauer resonance condition requires
this detuning to be small compared to the reciprocal of the overall observation time T'.
Therefore, the natural linewidth is not a fundamental limitation to the energy resolution
of a Mossbauer neutrino experiment. There is a well-known analogue to this in quantum
optics [4], called subnatural spectroscopy. Consider an experiment, in which an atom is
instantaneously excited from its ground state into an unstable state |b) by a strong laser
pulse at t = 0. Moreover, the atom is continuously exposed to electromagnetic radiation
with a photon energy F, which can eventually excite it further into another unstable state
|a). If, after a time 7, the number of atoms in state |a) is measured, it turns out that
the result is proportional to 1/[(E — AE)? + (va — 75)? /4] rather than to naively expected
1/[(E — AE)? + (v4 + 75)%/4], where AE is the energy difference between the two states,
and 7, 75 are their respective widths. In our case, the state |b) corresponds to a *H atom
in the source and a *He atom in the detector, while |a) corresponds to a *He atom in the
source and a 3H atom in the detector. The initial excitation of state |b) corresponds to
producing the tritium source and starting the Mossbauer neutrino experiment, and the
transition from |b) to |a) corresponds to the production, propagation and absorption of a
neutrino. Since the difference of decay widths vy, — 75 vanishes for Mdssbauer neutrinos,”
we see that v does not have any impact on the achievable energy resolution, in accordance
with eq. () Note that this is only true because the source is produced at one specific
point in time, namely ¢t = 0 (more generally, during a time interval that is short compared
to the tritium lifetime). In a hypothetical experiment, in which tritium is continuously
replenished in the source, an additional integration of P over the production time would
be required, and this would yield proportionality to 1/[(Eso — Ep)?+v?%], in full analogy
with the corresponding result in quantum optics [[4].

The T-dependence of P, as given by eq. (.44) can be understood already from a clas-
sical argument. If we denote the number of *H atoms in the source by Ng and the corre-
sponding number in the detector by Np, the latter obeys the following differential equation:

o(T) _
42

Np = —NgNyP., YNp . (4.45)
Here P, is the 7, survival probability, Ny is the number of 3He atoms in the detector,
which we consider constant (this is justified if the number of *H atoms produced in the
detector is small compared to the initial number of 3He), and o(T') is the absorption cross
section. It depends on T because, due to the Heisenberg principle, the accuracy to which
the resonance condition has to be fulfilled is given by T'. If we describe this limitation by

5We assume that the tritium nuclei in the source and detector have the same mean lifetime.
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assuming the emission and absorption lines to be Lorentzians of width 1/7", we find that
for |[Esp — Epo| < T~ the overlap integral is proportional to T', so that we can write
o = 50T with sp a constant. Using furthermore the fact that Ng = Ngexp(—~T), the
solution of eq. (f.45) is found as

_ NS,ONO’VPeGSO

17 12T, (4.46)

Np

This expression has precisely the T-dependence given by eq. ([.44).

5. Discussion

Let us now summarize our results. We have studied the properties of recoillessly emit-
ted and absorbed neutrinos (Mdssbauer neutrinos) in a plane wave treatment (section ),
in a quantum mechanical wave packet approach (section ) and in a full quantum field
theoretical calculation (section [{). The plane wave treatment corresponds to the stan-
dard derivation based on the same energy approximation. We have pointed out, that for
Mossbauer neutrinos this approximation is justifiable, even though for conventional neu-
trino sources it is generally considered to be inconsistent. The wave packet approach is an
extension of the plane wave treatment, which takes into account the small but non-zero
energy and momentum spread of the neutrino. Finally, the QFT calculation is superior to
the other two, in particular, because no prior assumptions about the energies and momenta
of the intermediate-state neutrinos have to be made. These properties are automatically
determined from the wave functions of the external particles in the source and in the de-
tector. For these wave functions we used well established approximations that are known
to be good in the theory of the standard Mossbauer effect.

In all three approaches that have been discussed, we have consistently arrived at the
prediction that Mossbauer neutrinos will oscillate, in spite of their very small energy un-
certainty. The plane wave result, eq. (R-]), is actually the standard textbook expression for
the 7, survival probability, and eqs. (B.1), (£.39) and (§.39) are extensions of this expres-
sion, containing, in particular, decoherence and localization factors. We have found that
these factors cannot suppress oscillations under realistic experimental conditions, but are
very interesting from the theoretical point of view.

Let us now compare the results of different approaches. First, we observe that the
decoherence exponents in our QFT calculations are linear in L/L°", while in the quantum
mechanical result, eq. (B.1]), the dependence is quadratic. This behaviour can be traced
back to the fact that Gaussian neutrino wave packets have been assumed in the quantum
mechanical computation, while in our QFT approach we have employed the Lorentzian
line shapes, which are more appropriate for describing Moéssbauer neutrinos. The linear
dependence of the decoherence exponents on L/ L in the case of the Lorentzian neutrino
energy distribution has been previously pointed out in [B].

Even more striking than the differing forms of the decoherence exponentials is the fact
that a localization factor of the form exp[—]Am?k\ /207] is present in egs. ([.39) and ({.39),
while the localization exponentials disappear from eq. (B.1) in the limit & — 0 which is
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relevant for Mossbauer neutrinos. This shows that the naive quantum mechanical wave
packet approach does not capture all features of Mdssbauer neutrinos. In particular, it
neglects the differences between the emission (and absorption) probabilities of different
mass eigenstates, which effectively may lead to a suppression of neutrino mixing. In realistic
experiments, however, this effect should be negligible.

Another interesting feature of the exponential factors implementing the localization
condition in our QFT calculations is that the corresponding exponents are linear in |Am§k|,
whereas the dependence is quadratic (for £ # 0) in the quantum-mechanical expres-
sion (B.I]). This can be attributed to the fact that we consider the parent and daugh-
ter nuclei in the source and detector to be in bound states with zero mean momentum
(but non-zero rms momentum). This is also the reason why the o,-dependence of the
localization exponents in eqs. ([£32) and ([:39) is different from that in the quantum me-
chanical approach (namely, they depend on ]Am?kl/ 207 rather than ]Am?kl/ 2poy,): for the
considered bound states, the rms momentum is p ~ o, so that po, ~ ag.

One more point to notice is that while the same quantity, the momentum uncertainty

op, enters into the decoherence and localization factors in the quantum mechanical for-
mula (B.]), this is not the case in the QFT approach, where the localization factors depend
on oy, whereas the decoherence exponentials are determined by the (much smaller) energy
uncertainty. In the case of natural line broadening this energy uncertainty is given by the
3H decay width v, while in all the other cases it is given by the widths of the neutrino emis-
sion and absorption lines, which are determined by the homogeneous and inhomogeneous
line broadening effects taking place in the source and detector.

The QFT results of eqs. (f:33) and (f39) describe not only the oscillation physics,
but also the production and detection processes. These results can thus also be used

for an approximate prediction of the total event rate expected in a Md&ssbauer neutrino
experiment. Both expressions contain the Lamb-Mossbauer factor (or recoil-free fraction),
which describes the relative probability of recoilless decay and absorption of neutrinos.
Moreover, they contain factors that suppress the overall process rate I' unless the emission
and absorption lines overlap sufficiently well. In the case of inhomogeneous line broadening
(section [£.9) as well as for homogeneous broadening different from the natural linewidth
effect, this is a Lorentzian factor, the same as in the no-oscillation rate ({.15). It suppresses
the transition rate if the peak energies of the emission and absorption lines differ by more
than the combined linewidth vg + vp. We have, however, found that the factorization of
the total rate into the no-oscillation rate including the overlap factor and the oscillation
probability is only approximate. For the hypothetical case of an experiment in which the
neutrino energy uncertainty is dominated by the natural linewidth ~ (section [l.4), we have
found that the overlap condition does not depend on =, but is rather determined by the
reciprocal of the overall duration of the experiment T'. Although this result may seem
counterintuitive at first sight, it has a well-known analogy in quantum optics [[[4] and is
related to the fact that the initial unstable particles in the source are produced in a time
interval much shorter than their lifetime.

Notice that the overlap factors contained in our QFT-based results for the neutrino
Mossbauer effect governed by the natural linewidth and by other line broadening mecha-
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nisms, egs. ({:39) and ([:35), are two well-known limiting representations of the d-function,

which yield the energy-conserving J-function §(Esg — Eppg) in the limits 7" — oo or
vs +vp — 0, respectively.® One can see that in these limits both expressions repro-
duce, if one sets the 7. survival probability P.. to unity, the no-oscillation rate ({.13)
obtained in the infinitely sharp neutrino line limit by treating the Méssbauer neutrino pro-
duction and detection as separate processes. Our QFT results thus generalize the results
of the standard calculations and allow a more accurate and consistent treatment of both
the production — detection rate and the oscillation probability of Mossbauer neutrinos.

To conclude, we have performed a quantum field theoretic calculation of the combined
rate of the emission, propagation and detection of Mdssbauer neutrinos for the cases of
inhomogeneous and homogeneous neutrino line broadening. In both cases we found that
the decoherence and localization damping factors present in the combined rate will not
play any role in realistic experimental settings and therefore will not prevent Mdssbauer
neutrinos from oscillating.
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A. Derivation of the transition rate for inhomogeneous line broadening

In this appendix we give details of the steps leading from eq. (f.2) to eq. ({.32) when the en-
ergy densities of the external states p4 g are chosen to have the Lorentzian form, eq. (f31).
First, we notice that the Lorentzians are sharply peaked, with their widths much
smaller than the peak energies, and therefore the energy integrals in (f.2§) get their main
contributions from the narrow intervals around these peaks. Since the peak energies, as well
as their differences Fy 50— Fhe,s,0 and Fy,s,0—Fhe 5,0 that determine the neutrino energies,
2 ~

are much larger than the neutrino masses, one can employ the expansion Eg —m; ~

Egs —m?/2Eg in the exponents.
Next, we make use of the identity

/ dE, dBy— /2T W2, - By
—0 (Ea — Ea70)2 + %l (Eb — Eb70)2 + %’
= / d(E, — Ey) e + )/ 2m oy [ Ba— Bb), (A1)
—o0 [(Eqa — Eb) — (Eajo — Epp)]” + 2t

that holds for any function f(FE) for which the integrals in (A.]) exist. To apply this
formula to eq. (4.2§), we have to extend the domain of the energy integrals from the

SEq. () yields T6(Es,0 — Ep,o) because it describes a probability rather than a rate.

— 21 —



physical region [max;(m;),00) to the whole real axis, (—oo,00). This is again possible
because the Lorentzians p4 g(E4,g) have very narrow widths and therefore ensure that the
unphysical contributions are strongly suppressed, the error introduced by the extension of
the integration interval being of order vs(py/Eg(p)0 ~ 10715, We can thus use eq. (A1)
to perform two of the four energy integrations in eq. (.2§). Of the remaining two, one is
trivial due to the factor 6(Eg — Ep), so that the expression for I' becomes

Ty B o0 2 2
r=-9-9 SYSYD/ dE s/ ;T 5 ’YD/;T 5
AL —co (E—ES,()) +’YS/4 (E—ED,()) +’YD/4
2F%2 —m?2 —m?2 AmZy
DU P Ukl exp |- —— g | 7 (A.2)
j?k p

Next, we pull the generalized Lamb-Mossbauer factor out of the integral, replac-
ing it by its value at B = (Eso + Epo)/2. This is justified by the observation that
vs,7p ~ 1071 eV « op ~ 10 keV, so that the generalized Lamb-Mossbauer factor is
nearly constant over the region where the integrand is sizeable. We are thus left with the
task to compute the expression

00 2 2 'Amz
Ijk = / dE ’YS/ 27T 3 ’YD/ 27T 2 e’ QIDJIC 5 (A3)
oo (E—Egp)? + ’YS/4 (E—Epo)?+ ’YD/4

which can be done by integration in the complex plane. The integrand of ([A.3)) has four
poles, two above the real axis and two below, and an essential singularity at F = 0 (see
figure fl). To circumvent the essential singularity, we choose the integration contour to
consist of the real axis with a small interval [—&, €] cut out, supplemented by a half-circle of
radius € around the point £ = 0 and closed by a half-circle of large radius. The contribution
of the small half-circle vanishes when its radius goes to zero provided that we avoid the
point £ = 0 from above when Am?k > 0 and from below when Am?k < 0. Thus, we close
the integration contour in the upper half-plane for Am?k > 0 and in the lower half-plane
for Am?k < 0. The contribution from the large half-circle vanishes when its radius tends
to infinity because the product of two Lorentzians goes to zero as |E|™* for |E| — oo, while
the exponential becomes unity in this limit. Application of the residue theorem yields now

(%) (D)
I = i 1 ’YDAjk fYSAjk (A.4)
" 2m Egg—Epo+iXL |Egg—Epo+ilfl  Ego—EpoFilse |’ '

with the notation from section [l.9. Here the upper (lower) signs correspond to Am?k >0
(Am?k < 0). Inserting this result into eq. (A.J), we obtain eq. ([.39).

B. Derivation of the total transition probability for the case of natural
linewidth dominance

In this appendix we describe the derivation leading from eq. (§.3§) to eq. ({.39). The
spatial integrals in eq. ([.3) are the same as those encountered in section [£.1 and yield the
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Figure 2: Integration contours in the complex E plane.

factor exp[—p?/202] explipL]. The time integrals can also be evaluated straightforwardly;
however, unlike the corresponding integrals in eq. (f17), they do not give exact, but
only approximate energy conserving factors for the production and detection processes.
This behaviour can be ascribed to the non-zero width of the tritium states and the finite
measurement time 7T'. To evaluate the three-momentum integral over p, we again employ
the Grimus-Stockinger theorem and thus find

. —1 vk
iA = SWQLNZMf;MD\Uej!Q/
J

o0

de ﬁe,S’Yu(l - 75)(7)]- + m])(l + 75),.}/’/“6’[)
)

VPR (B)

)

yp €
.e_ET

po — Es + i3 po— Ep +i3

—i(Bs—po)T—=3T _ 1 (i(Ep—po)T+3T _ PR — m?
exXp | =55
Ip

where the 4-vector p; is defined as p; = (po, (P§ — m?)l/ 2L/L). The exponential depend-
ing on 012),
approximated by its value at E = (Eg + Ep)/2 because 7 < 0, ensures that it is almost

constant in the region from which the main contribution to the integral comes, namely the

which will eventually lead to the generalized Lamb-Mossbauer factor, can be

region where |pg — Eg| < v and |pg — Ep| < 7. The fact that this region is very narrow
also allows us to pull the spinorial factors out of the integral and to expand the oscillation

= L _
z‘,/p%—m?L:i\/EQ—m?L—i—i;(Po—E), (B.2)

J

phase around E:

where v; = (E? —m?)l/ 2/E. The integral over pg can then be evaluated by complex contour
integration. The denominator has poles at pg = Eg — iy/2 and py = Ep — i7y/2, and the
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relevant terms in the numerator are

(e_i(ES_pO)T_%'YT — 1> (ei(ED—PO)T-i-%'yT _ 1) ei(Po—E)v%
_ eipou%e—i(Es—ED)T—Ev% B eipo(TJrvAj)e_iEsT_iEUAj_%ﬁ
) ()
o) GERT BT B S g g

(©) D)

To close the integration contour, we add to the real axis a half-circle of infinite radius.
For the terms labeled (A), (B) and (D), this half-circle has to lie in the upper half-plane,
while for (C) it has to lie in the upper half-plane for T' < L/v;, and in the lower half-plane
for T'> L/vj. As the integrand is holomorphic for Im(pg) > 0, only in this last case the
integral can be non-zero. The residue theorem then yields

. N oA gk T |2 E?—mi| 5 5
ZA:—47TL§ O(T—L/vj) MgMp |Uej|”-exp |- 202 tie,sYu(1=7")P; +m;)(1+7°)
J

)

1 L .

R — _§V(T—T) _l(ES_ED)T) i . . 3

. ’YVUQDGZ\/mLe Ef e 2E |:€_2(ES_ED)(T_“J')_eQ(ES_ED)(T_vj)
S — L&D

(B.4)

where now p; = (E, (E? — m?)l/2 L/L), and 0(x) is the Heaviside step function. The total
probability for finding a tritium atom at the lattice site xp in the detector after a time T is

P = A2, (B.5)

where the bar indicates the average over initial spins and the sum over final spins. Apart
from these spin sums, no integration over the energy distributions of the initial and final
state nuclei is necessary as long as only natural line broadening is taken into account,
because we are dealing with transitions between discrete energy eigenstates. A straightfor-

ward evaluation of eq. (B.5) yields eq. (f£39).

C. Weisskopf-Wigner approach to the effects of the natural line width

In this appendix we use the Weisskopf-Wigner approach [[]-f3, Bl] to derive eq. ({39),
which has been the starting point for our discussion of Mdssbauer neutrinos in the regime
of natural linewidth dominance. In particular, our aim is to substantiate the arguments
dictating the form of the exponential decay factors by an explicit derivation.

We can write the Hamiltonian of the system as H = Hy + e/t H e Hot where H;
is the interaction-representation weak interaction Hamiltonian and Hj is the remainder.
In general, we will not treat H; as a perturbation since we are ultimately interested in
the depletion of unstable states over time, which cannot be adequately described in a
perturbative approach.
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Particles Energy Coeflicient State vector
Initial state 3Hg 3Hep E® @ (@)
Intermediate states 3Hej§, Us, €g 3Hep EJ(-I) cg-l) ¢§-1)>
SHg Hp, vp B @ o)
3He:'§, Ug, €g 3HD, VD Ej(z) cﬁ) ¢§:]?>
3Heg 3Hp E@® @ ES)
*Hg 8He}, vp e, vp B ) ¢](€€Z)>
SHef, s, e5 *He}, op ep,vp  EN) 0 ¢§(,?l>
Final state 3Heg 3He25, Up e El(f) cl(f) ¢l(f)>

Table 1: Classification of the states appearing in a Mdssbauer neutrino experiment.

One can write an arbitrary state as [1(t)) = >, ¢;(t) |¢;), where [¢;) are the eigenstates
of Hy. The Schrédinger equation then gives the evolution equations for the coefficients c¢;(t):

ici(t) = (¢ Hu lgw) ck(t). (C.1)
k
For our purposes it will be convenient to slightly modify the notation and classify the
different states according to their particle content, as shown in table [I. 3H and *He
denote the two types of atoms in the experiment, and the index S or D shows whether the
respective particle is initially localized at the source or at the detector. For those states
for which we have written the electron participating in the reaction and the 3He™ ions
separately, we imply that the electron may be either free or in an atomic bound state,
while for the other states only bound electrons are considered. The upper index (i) stands
for the initial state, the indices (1) through (6) denote intermediate states, and (f) stands
for the final state, after the decay of the source particle, the absorption of the emitted
neutrino in the detector and the decay of the produced tritium. The lower indices stand
for the various quantum numbers of the particles; for example, j encodes the momenta and
the spins of Ug and eg, and the information whether eg is bound or free.
The evolution of the system is governed by the interaction Hamiltonian Hy = H ;5 +
Hp + ﬁg + H.c, where

H;I = /dgac %GF cos 0, <3He‘ JH |3H> Ve, 57 (1 — V), (C.2)
Hp = /dgzn %GF cos 6, <3H‘ JH ‘3He> T,Elﬁp(l - 75)¢6,D, (C.3)
i, = / Pz %GF cos 0. (*He| J* |°H) e 57, (1 = 7°) by - (C.4)

The Hermitian conjugates of these operators will be denoted Hg, HE and JSIB. The
Hamiltonians H;f and JZIB describe tritium decay in the source and detector respectively,
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whereas H, describes the 7, capture in the detector. Although the Hamiltonians are
essentially related by HY = H 5 —H 5, we will treat them as distinct operators throughout
this appendix to keep our derivation more transparent and more general. For the matrix
elements of the transitions, the following relations hold:

(09 7 = (o] 5 2 - (2] 5 ol
(6 D\¢22)>:<¢<1)\H+(¢<3)> (C5)
(O 5 [of") = (o] 5 |6i7) = (02| o |oli).

and similarly,

i 1 2 3 5 6
EO - Y = E? - EY) = EY - ES),

B _g® = g® _g®

f 2 5 3 6
EW - g = BY - EY = EJ) - Bj).

(C.6)

They follow from the fact that the corresponding processes differ only by the spectator
particles. The evolution equations for the system are

e =37 (o0 g |0”) &7 + 32 (o0 5 o)) . (€1
k
z’ég,l) _ < ¢§1) HE ¢(i)> ) +Z < ¢§1)‘ HY ‘ ¢ﬁ)> cﬁ), (C.8)
k
it? = (6| 1y, ¢<i>>c<i>+z<¢ 15 (o) < +Z<¢k [ |ol?) o, (c9)
{

o5 | Hp ¢§1)> ( < ‘HJF‘% >Ck +Z< ]k‘H ‘¢jkz> s (C.10)

iy

e =3 (o0 ) o)l +z<¢<4\H;\¢k Ve + l S (s, (can
D ()| 15 |2 2 5 (1 o) 42 i
icly = (ol H [o)) ) + <¢jkl1H51¢jk>c§?, (C.13)
i =3 (60|t |of7)) o) + (ol frf |6 @) 0. (C.14)

We treat all processes that occur within the source or within the detector non-
perturbatively, while first-order perturbation theory will be used for processes that require
the propagation of a neutrino between the source and the detector. This second kind
of transitions is suppressed due to the smallness of the solid angle at which the detector
is seen from the source. Consequently, we include only the respective forward reactions
(i.e. those proceeding downward in the scheme of table( 1), %1)‘5 neglect the feedback terms,

which would otherwise appear in the equations for ¢, ey and c,(j). The feedback of
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qbl(f )> to |<;5(4)> is included because the production of both states from the initial state
requires a single neutrino propagation between the source and the detector. The sums in
egs. ([CA)—(C14) symbolically denote the summation over the relevant discrete indices and
integration over the continuous variables.

The initial conditions for the equation system (C.7)(C.14) are given by ¢ (0) = 1
with all other coefficients vanishing at ¢ = 0.

Our ultimate goal is to solve the evolution equations for ¢(¥)(t), which determines
the 3H abundance in the detector at time ¢. It is convenient to first consider the closed
subsystem formed by eqs. ([C.7), (C-§), (C.9), (C.10), (C.12) and ([C.13), which we solve
from the bottom upwards. We start by integrating eq. ({C.13) to obtain an expression for

cﬁ)l, which we then insert into eq. (C.13). This yields

ity (1) = (o) | 50 |0 ) 2 (1)
—iy /0 at (o) | g (0] 650) (o] HE (4 |07 ) eff (1)
J

—iy /0 L (o | H5 0|60 (69 e [6D) D). (Cas)
J

Consider first the second term, which describes the effect 0%¢,(€5l)> of its decay into ‘¢§(2>

Following the Weisskopf-Wigner procedure as described in [43], we split the quantum num-
bers indexed by j into the energy F(®) and the remaining parameters 3. Denoting the
density of states (the number of states per unit energy interval) by p(E©®),3), one can

make the replacements
o) = |6k E©,5) . > / dECp(B®,5)  (C.16)
J B
in the second term of eq. (C.15), which gives
t 5
—i / dEO) K (E©) /0 dty B B =0) (O 1)) (C.17)

Here we have explicitly written down the time dependence of the matrix elements and
introduced the quantity

K(EO) = 3 (o] 150 o2 5O, 6)|” (5, 5), (C.19)
B

which is a smooth (non-oscillating) function of energy. More specifically, K (E(®)) represents
a broad bump of width O(myy ), so that a non-negligible contribution to the energy integral
in (IC.17) can only arise if t—t1 < 1/myy. Otherwise, the integrand is fast oscillating and the
integral is strongly suppressed. Therefore, we can to a very good accuracy replace c,(j;) (t1)
by c,(j) (t) in eq. (C.17) and pull it out of the integral over ¢; (we assume that c,(fl’) (t) is ap-
proximately constant over time intervals of order 1/myy. This assumption will be justified a
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posteriori by inspecting the obtained expression for c,(fl’) (t)). For t > 1/my we thus obtain

¢ W(E® _E©)) (4
—id® () /dE<6>K<E<6>)/ ity (B —E@ ) =1
0

_ 5 / (©) G _ e ip( L ©)
ic dFE w0 (E E + 1P K|(FE
() ( kil ) (E]S’) _ E(G)) ( >
= < . +25E>c,(j)() (C.19)
where
(6)
a 5) © K (BY)
v=2rK (B, JE =P / dE 20 56 (C.20)

and P denotes the principal value. As follows from the definition of the function K(FE)
in eq. (C.1§) and Fermi’s golden rule, v is just the decay width of H in the source. The

quantity 0F is the mass renormalization of the particles forming ‘(b,(j)> From now on,
we will omit 0F and similar quantities in subsequent formulas, assuming that they are
already included in the definition of the physical masses of the involved particles. The
formal solution to eq. (C.17) is

D) = —i / dt1 ¢ ‘ﬁg(tl) (¢§f>> e~37(=t) (D)4 (C.21)
~ 1
22/ dty dtz (6| Hs (t) [0S Y o] i (t2) |0 e300 ) 1)
By a similar argument, we obtain from eq. ({C.1():
7
i () = (o5 | Hp ) |68 (1) + (o | HE @) |07 ) o)) —ide )
—ZZ/dtl o5 | A5 |of) (| HE (1) |of)) e t),  (C.22)
where the decay width of 3H in the detector, 7, has been defined in analogy with eq. ([C.2Q).

We will now show that the last term of eq. ([C.22) can be neglected. To this end, we insert
in it the expression for c,(fl) (t) from (IC.21)), which yields

z)zz/otdtl /Otldtg ‘<¢§€2>‘ﬁ5(0)‘¢§)>‘2< sz‘Hs t1) ‘¢kl>
l

-e( E® E(5))(t t2) —1y(t1—t2) (2)( t2)

Py fan [ o s o2 0 ) s ) S s i)
J

A (2) (5)
(D ) (t—ts) C§§I>€(t3) ' (C.23)
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Here we have used eqs. ([C.) and ([C.6). We will show now that the first term of eq. (C.23)
can be neglected; a similar argument can be used to justify the neglect of the second term.
Replacing the index [ by E®) and 3 in analogy with eq. (C.16), we obtain

a1 (2)_ 12(5)
(—i) / dECK / dt; / dta( kl(fﬁ t1) ‘qﬁ > (B -E®) e t2) =gt —t2) () (1),
(C.24)

with K(E®)) defined analogously to K(E©). As in eq. (C.17), the energy integral is non-
negligible only if ¢t — to < 1/myy. We see immediately that here this condition also implies
t —t1 < 1/my. Consequently, we may pull out of the integral those terms which remain
approximately constant over time intervals O(1/myy), which gives

t t1 (2 (5)) (4
( < ykl‘H+ ‘qbkl Ck /dE E(5))/ dtl dtg ez<Ek E( ))(t t2)
0 0
2l ®l it LGN\ @ L) @ _ ey ipl— L N (p®
(=)o HE (Do) e (t)mW dE®|r5(EY) ~E )ﬂP(EI(;)_E(S))K(E )
~o<i>, (C.25)
mw

S . I .(3 .
which is negligible compared to the other terms contributing to cg.k) (t) (cf. eq. (C:22)).
This result already suggests the general rule that the only transitions which may contribute

sizeably to the evolution equations are those corresponding to the direct production of the
states (i.e. production with a minimum number of intermediate steps), and those corre-
sponding to direct feedback from a daughter state into its immediate parent state, e.g. from
‘¢§i)l> into ‘gbﬁ) > All terms corresponding to more complicated interaction chains are neg-

ligible. One can now solve eq. (C.29) for cﬁ):
B — i [ L o®] =1 | 6D o=t D)
i () = —i ; t1 {5 | Hp(tr)|¢; ") e 2 c;’ (t1)
t
=i [ (| o) B0 40 0). (C.20)

Next, we plug our expressions ([C.26) and ([C.21]) for cﬁ) and cl(j) into eq. (C.9):

(1) = (2| Hp(0) |60 e 0) — i2e(0) i 2D 1 (C.27)
-y ity (o) 50|62 (2] Hpt) o) e Die.
7 /o
We have omitted a term containing the product of <<;5 ‘ HD ‘qbkl > <<;5,(€5l ‘ ‘¢]kl> and

< ]kl‘ Hg ‘(;5 > and thus describing the transition chain ‘¢jk> ‘¢§'kl> — ‘qbkl > —

‘gbk >, because this term can be shown to be O(7/my ) by an argument similar to the one
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we used for eq. ({C.2). The formal solution to eq. (IC.27) is
t
cl(f) (t) = _Z‘/ dt, <¢](€2>‘ Hy(th) ‘¢(i)> e~ 3=t =33(t=t1) () (4,) (C.28)
0
oS [ g o= (6 O (@] = (1 k(D o= 2 (t—t)— 1 (e—t2), ()
() Z/dtl/ dt2<¢k ‘HS(tl)‘¢jk><¢jk‘HD(t2)‘¢j >e ()= 30D 1)
70 Jo
We now proceed to eq. ([C.§):
i) = (o | 13 (1) [o) O 1) (C.29)
t
. 1 3 3| - D\ —15(t—ty) (1
=i [lan (7 g o) (2| mpen o) e &),
k
The contributions coming from c,(f) through the transition chain ‘¢]g2)> —

‘¢(3)> — ‘¢§.1)> are again omitted as being O(5/mw). The term containing

<<;§.1) HE (t) ‘¢§i)> <¢ﬁ)‘ Hp(t) ‘¢§-1)> describes the direct feedback from ‘¢§i)> to ‘¢§-1)>,

but since the transition ‘¢§1)> — ‘gbﬁ)> does not occur spontaneously, the corresponding

decay width is zero. Indeed, when applying the Weisskopf-Wigner procedure, we see that
the resulting J-function under the energy integral is zero for all allowed energies. Thus,
the second term in eq. (C.29) is negligible, and the equation is solved by

t
1 ; 1 i i
¢ (1) = —z/o aty (60| HE (1) [00) O (n). (C.30)
We can insert this expression, together with cl(f) (t) from eq. (C.29), into the equation for
c9(t), and find
cD(t) = em2t (C.31)
up to a term suppressed by 7/my. The closed-form expressions for cgl)(t), c,(f) (1), cﬁ) (1),
cl(j) (t), and cﬁ)l(t) are then

o =i | ity (6| H30)|69) e o (C.32)

0= i [y (o] Bip(an)|o0) et (C.33)
0

(1) = (i)? [ /0 it (60 (00 ) e-%m][ /0 tdt1<¢,(f)‘H5(t1) o) e—%w—tﬂ} ,

(C.34)

2
Kol
=
—~
~
~—
I

(—i)z/otdtl/otldtz<¢1(51’)‘g3(t1)‘¢1§2)> <¢1§2)‘H1:_)(t2)
ca(t) = (=i)? [ /0 aty (o] FE () |0 e-%m]
[ /0 ity /0 Vit (o | Frp e o) (92| He) |09 e-%wl—“)]- (C-36)

¢(z’)>€‘%vt—%%(t1—t2), (C.35)
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In the expressions for ) (t) and cﬁ)l (t), we have used the identity

J
¢ 4 ¢ ¢
/ dt / dty = / aty [ at. (C.37)
0 0 0 to

Egs. (C.31))-(C.36) show that all coefficients are slowly varying over time intervals of or-
der 1/myy, which provides the a posteriori justification for pulling them out of the time
integrals when applying the Weisskopf-Wigner procedure.

We have now all the ingredients required to solve for c¢®(t).  We insert

egs. (C.32), (C.33) and (C.14) into eq. (C.11), neglect the O(Y/mw ) contribution from
the reaction chain ‘¢,(€5l)> — ‘qﬁl(f )> — ‘¢(4)>, and apply the completeness relations

Sy (=1, S|e) (o] =1 .39
J k

to dispose of the sums over j and k and of the intermediate bra- and ket-vectors in the
products of matrix elements. This leads us to the main result of this appendix,

t t1 .
(1) = (~i)? / dty / dty (6| [Hp (11)e 87070 HE (1)e™ 0"
0 0
+ HE(t)e 2" HB(tQ)e—%%(t—m] ‘¢<i>> . (C.39)

We see that ¢ (t) is given by the time-ordered product of the two interaction Hamiltonians,
supplemented by the classically expected exponential decay factors. After inserting the
appropriate expressions for H; and Hp, finally setting 4 = v and applying the Feynman

rules, eq. (C-39) leads directly to eq. ([.3§) of section [.4}.
For completeness, we also give the expression for ¢ )(t):

t t1 to B i

Cl(f) (t) = (_i)3/0 dt1/0 dtQ/O dts <¢l(f)‘ [HE(tl)HB(tz)e—%’y(h—tz) H;(tg)e_%7t3 (C.40)
+,F~IB(tl)H;(t2)6_%'Yt2H[—)(t3)e—%:y(t1—t3)

+H§r(t1)€_%7t1ﬁ$(t2)H5(tg)e_%’?(t%t?r)] ‘¢<z>> .

Note that an alternative way of solving egs. (IC.7)-(C.14) is to exploit the fact that,

in the closed system formed by eqgs. ([C.7), (C.§), (C.9), (C.10), (C.13), and (C.13), the

processes in the source and those in the detector can be separated by using a product ansatz
()
1

for the coefficients c. Once this subsystem is solved, ¢® and ¢,”’ can be computed as above.
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